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Preface

Electromagnetic Field Theory is a fundamental and probably one of the most complicated
subjects for students of undergraduate level. When | was pursuing my studies towards second
master degree in Electrical Engineering from George Washington University USA, | learnt the
subject with intention to teach it to my undergraduate students in a way to make it a user
friendly subject for them. During my studies the two books, Electromagnetic Field Theory, By
Hozorgu & Guru and Engineering Electromagnetics, 5th Edition by William H. Hayt, Jr. helped
me a lot and | have used these books as reference books with an objective that it will help my
undergraduate students. This book is intended to be easy and bringing the readers the
important information regarding some basic and fundamental topics of Electromagnetic Field
Theory. Important theoretical and mathematical results are given with the accompanying
lengthy proofs, which | think is the main characteristic of the book. Solved numerical problems
have been added to give the students the confidence in understanding the material presented.
This book covers the topics of basic Electromagnetic Field Theory with the objective of learning
and motivation. Easy explanation of topics and plenty of solved relevant examples is the
principal features of this book. Practice problems have not been included in the first edition
and | intend to include it in the next edition.

The book is designed primarily for junior-level undergraduate university students and is one
semester course. It includes 8 chapters on Vector Quantities, Force and Electric Field Intensity,
Electric Flux & Electric Flux Density, Energy and Voltage, Magnetic Flux and Fields, Force and
Torque, Maxwell’s Equations and Electromagnetic Waves. This is my second book as the first
book titled; Basic Electrical Engineering for the undergraduate level students of Electrical
Engineering was published in 2019. | know there will be lots of errors in this book, but the
feedback of the students for the rectification of the errors will be appreciated and will
definitely enhance its quality.

Dr. Gulzar Ahmad
Associate Professor
Department of Electrical Engineering
University of Engineering & Technology Peshawar, Pakistan



Chapter 1
Vector Quantities

1-1 Vectors

Those quantities that can be described by magnitude as well as direction are known as
vectors. For example force, electric field intensity and magnetic field intensity.
Mathematically a vector is represented as

A=Aa (1.1)

Where A represents the magnitude of this vector and a is a unit vector in the
direction of A. We already know that magnitude of a unit vector is 1.The bold letters
represent vectors. The following equation defines a unit vector in the direction of
vector A.

a= Z (12)

The graphical representation of a vector is given in Figure 1-1. The magnitude of this
vector is given by the length of the arrow and the direction of the vector is given by the
direction of arrow.

Magnitude
//’
Tail

Figure 1-1: Representation of a Vector

Head

1-2 Addition of Vectors

Vectors are added with the help of head to tail rule. The addition of vectors A and B
results in a new vector, as shown in Figure 1-2. Vectors obey Commutative Law in case
of addition. Mathematically



A+B=C (1.3)
B+A=C (1.4)

So

A+B=B+A (1.5)

(Commutative Law)

Figure 1- 2: Vectors Addition

1-3  Scalar Product

This product is also known as dot product. It results in a scalar quantity and obeys
commutative law. Consider two vectors A and B as shown in Figure 1-3. The angle

between these two vectors is 4.

Figure 1-3: Scalar Product

The Scalar product is given by

A.B=B.A=ABcos@ (1.6)

(Commutative Law)



Consider two vectors equal in magnitude and in the same direction as shown in Figure
1- 4.

AA=A? (1.7)

So the magnitude of a vector can be calculated with the help of the following equation.

A=VAA (1.8)
/
B=A

Figure 1-4: Scalar Product of Two Parallel Vectors
1-4 Vector Product

This product is also known as cross product. It results in a vector quantity and does not
obey commutative law. Consider two vectors A and B in the plane of the paper as
shown in Figure 1-5.

Figure 1-5: Two Vectors
The vector product is given by
C=AX B=ABsinfa, (1.9)

Where a, is a unit vector normal to the plane containing vector A and B. The
direction of the resultant vector can be found using right hand rule. We place our right
hand with thumb normal to the fingers along the first vector 4 such that if we move it



towards the second vector B the front side of the right hand faces vector B. In this
case the thumb indicates the direction of the resultant vector C. Note that the cross
product doesn’t obey commutative law.

AXxB=-BxA (1.10)

A

Figure 1-6: Vector Product
1-5 Rectangular Coordinate System

There are three coordinates X, Y and Z in the Rectangular Coordinate System and they
are normal to one another as shown in Figure 1-7.

Fi

S

Figure 1-7: Coordinates of Rectangular Coordinate System

There are three planes in the rectangular coordinate system thatis x =0 Plane, y =
0 Plane and z = 0 Plane as illustrated in Figure 1-8. We can find out the location of a
point P(x,y, z) in the three dimensional space, if x, y and z coordinates of the point are
known. The x coordinate of the point P(x,y, z) is parallel to x — axis, y component is
parallel to y — axix, while the z coordinate of the point is parallel to z — axis.If a
point is in the z = 0 Plane, then its z coordinate will be zero, If a point isinthe x =0
Plane, then its x coordinate will be zero and If a point is in the y = 0 Plane, then its y
coordinate will be zero.



AZ X=0Plane

Y=0 Plane e P(x,y,2)
bz
e = :_ ‘l.)
| 7
| V.
| 2 X
______ ¥
y
Z=0Plane
X

Figure 1-8: Planes in the Rectangular Coordinate system

The three unit vectors a,, a, and a, are along x, y and z axis respectively and they
are normal to one another as shown in Figure 1-9.

Figure 1-9: Unit Vectors of the Rectangular Coordinate system

We know that a,.a, = a,.a, =a,.a, =1and a,.a,=a,.a, =a,.a,=0.Lletus
review that vector obeys commutative law in case of scalar product.lt means that if we
change the order of the two vectors, the results does not change. Similarly a, X a, =
a, X a, = a, X a, = 0.The cross product of the unit vectors is elaborated in Table 1-
1. It is evident from the table that cross product does not obey commutative law.

Table 1-1: Cross Product of Unit Vectors

a,Xa,=a, a,Xa,=—a,
a,Xa,=a, a, X a, = —a,
a, x a, = a, a,Xa,=—a,
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A three dimensional vector in rectangular coordinate system has three components.
The first component is along x-axis, the second component is along y-axis and the third
component is along z-axis as given in equation 1.11.

A= Aca, +Aya, +A,a, (1.11)
1-5-1 Addition of Vectors

The addition of two or more than two vectors results in a new vector. Vector addition
obeys commutative law. Consider the addition of the following two vectors.

A=Aya,+Aya,+4,a, (1.12)
B = B.a, + Bya, + B,a, (1.13)
A+B=B+A=(A.+BJa, + (A, +B,)a, + (4, + B,)a, (1.14)

1-5-2 Scalar Product of Vectors

The scalar product of two vectors results in a scalar. It obeys commutative law.
Consider the scalar product of the two vectors A & B.

A.B=B.A=(AB)+ (A,B,) + (4,B,) (1.15)
Consider two vectors which are equal in magnitude and in the same direction, then
A A= (4,40 + (4,4,) + (4,4,)
AA=(A)% +(4,) + (4,)?

The magnitude of a vector in RCS can be calculated as

A=VAA= J(Ax)z +(4,)" + (4,)? (1.16)

1-5-3 Cross Product of Vectors

The cross product of two vectors results in a vector quantity. It does not obey

11



commutative law. Consider the cross product of the two vectors 4 & B.

a, a, a,
AXB= Ax Ay Az
B, B, B,
While
a, a, a,
B x A= Bx By BZ
Ay A, A,

In rectangular coordinate system, we assume that this three dimensional universe is in
the form of a rectangular box as shown in Figure 1-10.

Z
/:
|
I
|
z"—
-
-~
-~
z

=

Figure 1-10: Rectangular Box

X

Limits for the three coordinates are

Example 1-1:

Consider the vectors in Rectangular coordinate system. (i) add these two vectors (ii)
compute the scalar product (iii) compute the vector product (iv) Find the angle
between 4 and B.

12



A =3a,+ 2a, + 2a,

B =a, +3a, + 4a,

Solution
(i) A+ B =4a, +5a, + 6a,
(ii) AB=3%x1+4+2Xx3+2%x4=17
(i)
a, a, a,
AxB=|3 2 2
1 3 4
AXB =2a,—10a, +7a,
(iv) A=\V9+4+4=412
B=+v1+9+16=5.09
A.B = ABcos 8
0 = cos‘l(ﬁ
AB
0 = cos‘l(i
20.97
6 = cos™1(0.81) = 35.9°
Example 1-2:

Consider the vectors in rectangular coordinate system. Find the angle between A and
B with the help of vector product.

A =3a, + 4a, + 0a,
B =4a, +3a,+a,
Solution

13



a, a, a,
AXB=|3 4 0
4 3 1

AXB = 4a, —3a, —7a,

|AX Bl =+v16+9+49 =86

A=V9+16=5
B=vV16+9 + 1 =5.09
0= sin-1 |A % B
= sin™"( 1B )
6 = sin~! 8.6 = 19.7°
= sin" (55509 = 1%

1.6 Cylindrical Coordinate System

We can find out the location of a point P(x, y, z) in the three dimensional spaces with
the help of p, @ and z coordinates of the point as well. The location of the point P has

been elaborated in Figure 1-11.

P(x,y,2)-P(p. 0.2)

Z=0 Plane

Figure 1-11: Point in Cylindrical Coordinate system

p is the radial line in the z = 0 plane, which makes an angle of @ with respect to x —
axis. So we draw a line p in the z = 0 plane such that it makes an angle of @ with

14



Z=0 Plane

X

Figure 1-12: Point in Cylindrical Coordinate System

respect to x — axis and then another line z that is perpendicular to p and we get the

point P as shown in Figure 1-12.

If @ is zero, then radial line p will be along x — axis and if @ = 90, then radial line p

will be along y — axis. Consider the triangle shown in Figure 1-13.

x=pcos@
y=psin®
z=12z

Figure 1-13: Transformation of a point
We apply Pythagoras Theorem to the right angle triangle
p=1x2+y?
1Y

@ = tan

zZ =12z

There are three unit vectors a,, a; and a, in the cylindrical coordinate system as

shown in Figure 1-14.These three unit vectors are normal to one another. The unit

15



vector a, is in the z = 0 plane such that it makes an angle of @ with respect to x-
axis.

> R

/%
AN

a,

Figure 1-14: Unit Vectors of Cylindrical Coordinate System

The unit vector ay is in the z = 0 plane such that it makes an angle of 90 + @ with
respect to x-axis and the unit vector a, is normal to the plane containing a, and ay.

Let us consider a few examples. If @ = 0, then a, will be along x-axis, ay will be along

y — axis and a, will be along z — axis as shown in Figure 1-15.

a,

/—3’ oy

ap

Figure 1-15: Unit Vectors when @ = 0

If =90, then a,will be along y —axis, ag will be along negative x — axis

and a, will be along z — axis as shown in Figure 16.

Figure 1-16: Unit Vectors when @ = 90

16



We know thata,.a, = ag.ay = a,.a, =1and a,.ay =ay.a, =a, a, =0Let us
review that vector obeys commutative law in case of scalar product. It means that if we
change the order of the two vectors, the results does not change. Similarly a, X a, =
ag X ag =a, X a, =0.The cross product of the unit vectors is elaborated in Table 1-
2. It is evident from the table that cross product does not obey commutative law.

Table 1-2: Cross Product of Unit Vectors

a, X ay = a, ap x a, = —a,
ag X a, = a, a, x ag = —a,
a; xXa, = ay a, Xa, = —ag

A three dimensional vector in cylindrical coordinate system has three components. The
first component is along the unit vector a,,, the second component is along the unit
vector ag and the third component is along z-axis as given in equation 1.17.

A =Aya, + Agay + A,a, (1.17)
1-6-1 Addition of Vectors

The addition of two or more than two vectors results in a new vector. Vector addition
obeys commutative law. Consider the addition of the following two vectors. The angle
@ should be the same for these two vectors A & B. This condition needs to be
satisfied for the addition of these two vectors, otherwise we have to transform these
two vectors from the cylindrical coordinate system into rectangular coordinate system
for the sake of addition.

A =Aya, + Agay + A,a, (1.18)

B = B,a, + Byay + B,a, (1.19)

A+B=B+A=(A4,+B,)a,+ (4 + By)ag + (A, + B)a,  (1.20)
1-6-2 Scalar Product of Vectors

The scalar product of two vectors results in a scalar. It obeys commutative law.
Consider the scalar product of the two vectors A & B.The angle @ should be the same
for these two vectors A & B. This condition needs to be satisfied for the scalar

17



product of these two vectors, otherwise we have to transform these two vectors from
the cylindrical coordinate system into rectangular coordinate system for the sake of
scalar product.

A.B=B.A=(A,B,) + (4yBy) + (4,B,) (1.21)
Consider two vectors which are equal in magnitude and in the same direction, then
A A= (4,4,)+ (ApAp) + (A,A,)
AA=(A,) + (Ag)? + (A,)?

The magnitude of a vector in CCS can be calculated as

A=VA A= \[(Ap)z + (4g)2 + (A,)? (1.22)

1-6-3 Cross Product of Vectors

The cross product of two vectors results in a vector quantity. It does not obey
commutative law. Consider the cross product of the two vectors A & B.The angle @
should be the same for these two vectors A & B. This condition needs to be satisfied
for the cross product of these two vectors, otherwise we have to transform these two
vectors from the cylindrical coordinate system into rectangular coordinate system for
the sake of vector product.

a, a; a,
AxB=|4 4 A4,
B, By B,

While
a, a; a,
BxA=|B, By B,
A, Ay A,

18



In cylindrical coordinate system, we assume that this three dimensional universe is in
the form of a right circular cylinder as shown in Figure 1-17. Radius of the cylinderis p
that is always normal to z — axis.

Z-axis

"'\-\.\_\_\_'_'_.

Figure 1-17: Cylinder of radius p

Limits for the three coordinates are

0<p< ™
0<Q<2m
—0<z<®©
Example 1-3:
Find distance between A and B.
A(8,6,0) ; B(5,36.8%,0)

Solution
We transform B to rectangular coordinate system
x =5c0s36.8 =4
y =5sin36.8 =3
z=0

So B(5,36.8%,0) in rectangular coordinate system is given by

19



B(4,3,0)

Distance between A and B is given by

d=.(8—-4)2+(6-3)2
d=5
1-7 Spherical Coordinate System

We found the location of the point P(x, y, z) in the three dimensional spaces with the
help of p, @ and z coordinates of the point in the cylindrical coordinate system. The
location of the point P was elaborated in Figure 1-18. We replace p by rsinf and z
by rcos@ in Figure 1-18 and draw the same point P with the help of r, 8 and @. It
can be seen from Figure 1-19 that

p=rsinf

Z=1rcos6

Z=0 Plane

Figure 1-18: Point in Cylindrical Coordinate system

So we draw a line rsin@ in the z = 0 plane such that it makes an angle @ with
respect to x — axis and then another line r cos @ that is perpendicularto rsin6 and
we get the point P as shown in Figure 1-19.

20



Figure 1-19: Point in Spherical Coordinate System
As
x=pcos@
Putting the value of p in above equation, we obtain
x =rsinfcos®
And as
y=psin®
Putting the value of p in above equation, we obtain
y =rsinfsin@®
z=rcosf
We square and add equations (1.23) and (1.24)
x?=171?sin? 60 cos? @

y? =r?sin? @sin? @

x?+y?=1r?sin?6

21
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(1.24)

(1.25)

(1.26)



Taking the square on both sides of equation 1.25 and adding with equation 1.26, we

obtain
x%+y? = r?sin?6
z? = r?cos? 6
r2 =x2+y? + 22
Therefore
r=.x2+y?+2z? (1.27)
0= tan‘1¥ (1.28)
0= cos‘1§ (1.29)

There are three unit vectors a;, as and ag in the Spherical coordinate system as
shown in Figure 20. These three unit vectors are normal to one another. The unit
vector a, is along the radial line r and it makes an angle of 8 with respect to z —
axis. The unit vector ay is in the z = 0 plane such that it makes an angle of 90 + @

with respect to x — axis and the unit vector ag is normal to the plane containing a,

and ag. Let us consider a few examples.

g

Figure 1-20: Unit Vectors of Spherical Coordinate System



If ®=0,and 8 =0, then a, will be along z-axis, ay will be along y-axis and ay will
be along x-axis as shown in Figure 1-21.

a,

g

Figure 1-21: Unit Vectors when P & 68 = 0

If =90 and 8 =0, then a, will be along z-axis, as will be along negative x-axis
and agy will be along y-axis as shown in Figure 1-22.

o,

d

Figure 1-22: Unit Vectors when ® =90 &6 =0

Qg

» g

We know thata,.a, = ag.ay =ag.a9g =1 and a,.ay =a,.ag =ag.as = 0. Let
us review that vector obeys commutative law in case of scalar product.Ilt means that if
we change the order of the two vectors, the results do not change. Similarly a, X a, =
ag Xag =ag X ag = 0.The cross product of the unit vectors is elaborated in Table
1-3. It is evident from the table that cross product does not obey commutative law.

Table 1-3: Cross Product of Unit Vectors

a.xXag=a, ag X a, = —a,
ag X a, = a, a, X ag = —a,
a, X a, =ay a. xa,=—ay

A three dimensional vector in spherical coordinate system has three components. The
first component is along the unit vector a,, the second component is along the unit

23



vector az and the third component is along the unit vector ay as given in equation 1-
30.

A=A.a, +Agag + Agay (1.30)
1-7-1 Addition of Vectors

The addition of two or more than two vectors results in a new vector. Vector addition
obeys commutative law. Consider the addition of the following two vectors. The angle
@ and 6 should be the same for these two vectors A & B. These two conditions
need to be satisfied for the addition of these two vectors, otherwise we have to
transform these two vectors from the spherical coordinate system into rectangular
coordinate system for the sake of addition.

A=Aa,+ Agag + Agay (1.31)

B = B.a, + Byay + Bgay (1.32)

A+B=B+A=(A.+B.a,+ (4g + Bg)ag + (4p + By)a, (1.33)
1-7-2 Scalar Product of Vectors

The scalar product of two vectors results in a scalar. It obeys commutative law.
Consider the scalar product of the two vectors A & B. The angle @ and € should be
the same for these two vectors A & B. These two conditions need to be satisfied for
the addition of these two vectors, otherwise we have to transform these two vectors
from the spherical coordinate system into rectangular coordinate system for the sake
of dot product.

A.B =B.A = (A.B,) + (4gBy) + (Ay3By) (1.34)
Consider two vectors which are equal in magnitude and in the same direction, then
A.A = (A:A,) + (Apdp) + (Ap4p)
A.A = (A% + (4g)? + (4p)®

The magnitude of a vector in CCS can be calculated as

24



A=VA A= [(A)%+ (4g)% + (4p)? (1.35)
1-7-3 Cross Product of Vectors

The cross product of two vectors results in a vector quantity. It does not obey
commutative law. Consider the cross product of the two vectors A & B. The angle @
and 6 should be the same for these two vectors A & B. These two conditions need
to be satisfied for the addition of these two vectors, otherwise we have to transform
these two vectors from the spherical coordinate system into rectangular coordinate
system for the sake of vector product.

AXB= Ar AG A(p
While
B x A= Br BG B(p

In spherical coordinate system, we assume that this three dimensional universe is in
the form of a sphere of radius r as shown in Figure 1-23.

Figure 1-23: Sphere of radius r

Limits for the three coordinates are

25



0<0<2m
Example 1-4:
Find distance between A and B.
A(20,36.8°,0) ; B(5,90°,36.8%)
Solution
We transform A to rectangular coordinate system
x =20c0s36.8 =16
y = 20sin36.8 = 12
z=0
So A(5,36.8°,0) in rectangular coordinate system is given by
A(16,12,0)
We transform B to rectangular coordinate system
x =5sin90co0s36.8 = 4
y =5sin90sin 36.8 = 3
z=5c0s90=0
So B(5,90°,36.8°) in rectangular coordinate system is given by
B(4,3,0)

Distance between A and B is given by

d=.(16 —4)2 + (12 — 3)2

d=15

26



1-8 Component of a Vector in a given direction

Consider vector B as shown in Figure 1-24. We want to find out the scalar component
of B along the unit vector a and the vector component of B in the direction of a.

> a
Figure 1-24: Vector B and a unit Vector a

We resolve the given vector in to two components and consider the component that is
along the unit vector. Consider Figure 1-25, the scalar component of B along the unit
vector a is given by

B.a = Bcos®f (1.36)

g

W
L]

R ——
B.a =B Cosg

Figure 1-25: Scalar component of B

Vector component of B in the direction of the unit vector a is shown in Figure 1-26 and
is given by

(B.a)a = (Bcos8)a (1.37)

27



g I

e
-

(B.a)a =(B Cosf)a

W
b

Figure 1- 26: Vector component of B
1-9 Transformation of the unit Vectors from RCS to CCS

We want to transform the unit vectors of Rectangular Coordinate System into the unit
vectors of Cylindrical Coordinate System. Consider the vectors shown in Figure 1-27.
We resolve a, into two components. This unit vector has a component along x —

axis, and another component along y — axis. There is no component along z —

axis.
a, = cosgay + sinpay + 0ag (1.38)
> a
b
d
cosoa, 0 P
W >
5INg E|,5|r
W
d
X

Figure 1-27: Components of a,,

Consider the vectors shown in Figure 1-28. We resolve ag into two components. This
unit vector as has a component along negative x — axis and another component
along y — axis. There is no component along z — axis.

a, = —singay + cos pa, + 0ay (1.39)
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a, .
—singa,
EI e
- > a,
cos @ a,

Figure 1-28: Components of ay
We construct the table of the Scalar product of the unit vectors from equation 1.38 as;

Table 1-4: Scalar Product

a,.ay = cosq

a,.a, =sing

a,.a,=0

We construct the table of the Scalar product of the unit vectors from equation 1.39 as;

Table 1-5: Scalar Product

ag. a, = —sing

Qg . Ay = COS P

ag.a, =0

The unit vector a, can be written as

a,=0a,+0a,+ ayg (1.40)

ax
ay
az

Equations 1.38 -1.40 can be written in the matrices format
a, cosg sing 0
Ag|l=|—sing cosp O
a, 0 0 1
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1-10 Transformation of a Vector from RCS to CCS

We want to transform a vector from Rectangular Coordinate System into Cylindrical
Coordinate System. Consider a vector in the Rectangular Coordinate System

A=Aa,+Aya,+A,a, (1.41)
The scalar component A, is given by

A =A.ap

p
Ap = (Axay + Aya, + Aza,) . a, (1.42)
Equation 1.42 can be simplified with the help of Table 1-4
A, = cos pAy + sinpAy + 04y (1.43)
The scalar component Ay is given by
Ag= A.ay
Ag = (Axay + Aya, + Aza,) .ay (1.44)
Equation 44 can be simplified with the help of Table 1-5
Ag = —sinp Ay + cosp Ay + 047 (1.45)
The scalar component 4, is given by

A, =04, + 0 Ay + 4y (1.46)

Equations 1.43, 1.45 and 1.46 can be written in the matrices format as

Ap cosg sing 0]]Ax
Ag| =|-sing cosg 0f|4y
A, 0 o 1|4,

We will compute these three cylindrical components of Vector A and then the same
vector in cylindrical coordinate system can be written as

A =Aya, + Agay + A,a, (1.47)
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Example 1.5:
Transform A = 5a, into Cylindrical Coordinate System at P(2, 53.1°,3)

Solution

Ag | =|—sin53.1 cos53.1 0|0
A, 0 0 11Lo0

Ap cos53.1 sin53.1 0”5]
A =4a, —3ay + Oa,
1-11 Transformation of a Vector from CCS to RCS

We want to transform a vector from Cylindrical Coordinate System into Rectangular
Coordinate System. Consider a vector in the Cylindrical Coordinate System

A =Aya, + Apay + A,a, (1.48)
The scalar component A, is given by
Ay = A.ay
Ay = (Apa, + Agag + Aya;) .ay (1.49)
Equation 1.49 can be simplified with the help of Table 1-4 and Table 1-5
Ay =cosp A, — sinp Ay + 047 (1.50)
The scalar component Ay is given by
Ay = A.ay
Ay = (Apa, + Apay + Aa,) .ay (1.51)
Equation 1.51 can be simplified with the help of Table 1-4 and Table 1-5

Ay =singp A, + cosp Ay + 0 Ay (1.52)

y

The scalar component A4, is given by
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A, =04, + 0 Ay + Az (1.53)

Equations 1.50, 1.52 and 1.53 can be written in the matrices format as

Ay cosp —sing 074
Ayl =|sing cosg 0f|4p
A, 0 o 1l|a,

We will compute these three rectangular components of Vector A and then the same
vector in rectangular coordinate system can be written as

A=Aa,+Aya,+A,a, (1.54)
1-12 Transformation of the unit Vectors from RCS to SCS

We want to transform the unit vectors of Rectangular Coordinate System into the unit
vectors of Spherical Coordinate System. Consider the vectors shown in Figure 1-29. We
resolve a, into two components.

a, =sinfa, + cosba, (1.55)

As a, = cospay + singa,

= a,
Figure 1-29: Components of a,

Therefore a, =sinf cosp a, +sinfsinp ay, +cosb a, (1.56)

We construct the table of the Scalar product of the unit vectors from equation 1.56 as;
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Table 1-6: Scalar Product

a,. a, =sin6 cos @

a,. ay, =sinfsin ¢

a..a,=cosf

Consider the vectors shown in Figure 1-30. We resolve ag into two components.
ag =sinaa, — cosaa, (1.57)
As 0 +90 + a = 180, therefore « =90—-0

ag =cosba, — sinba, (1.58)

Putting the value of a,, we obtain

ag = cosBcospa, + cosOsing ay, —sinba, (1.59)

We have already resolved ag into two components

a, = —singay + cos pay, + 0ag (1.60)

i,

A

sin & a,

————»

cosf a, a, -
6
a N O

i
fﬂ-p

— cosaa,

W 5

S & ﬂ’p

W

- ﬂ’z
Figure 1-30: Components of ag
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We construct the table of the Scalar product of the unit vectors from equation 1.59 as;

Table 1.7: Scalar Product

ag. ay, = cosBcosy

ag. ay, = cosOsing

ag. a, = —sin0

Equations 1.56, 1.59 and 1.60 can be written in the matrices format

Qg cos@cosp cosOsing —sinBf]|ay

ar] [sin Ocosp sinfsing cos6 ] [ ax]
agp —sing CoSs @ 0 a,

1-13 Transformation of a Vector from RCS to SCS

We want to transform a vector from Rectangular Coordinate System into Spherical
Coordinate System. Consider a vector in the Rectangular Coordinate System

A=Aya,+Aya, +A,a, (1.61)
The scalar component A, is given by
A= A.a,
Ar = (Ayay + Aya, + Aza,) . a, (1.62)
Equation 1.62 can be simplified with the help of Table 1-6
Ar = sin 8 cos Ay + sin @ sinpAy + cos 6 Ay (1.63)
The scalar component Ag is given by
Ag = A.ag
Ag = (Aya, + Aya, + A,a,) .ag (1.64)
Equation 1.64 can be simplified with the help of Table 1-7
Ag = cosBcospAy + cosOsinpAy, —sinB Ay (1.65)
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And Ag = —sin@ Ay + cosp Ay + 04y (1.66)

Equations 1.63, 1.65 and 1.66 can be written in the matrices format as

A, sinfcosg sinfsing cosf 7| Ax
Ag| =|[cosBcose cosBsing —sinB||Ay
Ay —sing cos @ 0 A,

We will compute these three spherical components of Vector A and then the same
vector in spherical coordinate system can be written as

A=Aa, +Agagt+ Agay (1.67)
1-14 Transformation of a Vector from SCS to RCS

We want to transform a vector from Spherical Coordinate System into Rectangular
Coordinate System. Consider a vector in the Spherical Coordinate System

A =Aca,. + Agag+ Agay (1.68)
The scalar component A, is given by
Ay = A. ay
Ay = (Ara, + Agag+ Agay) . ay (1.69)
Equation 1.69 can be simplified with the help of Tables 1-5, 1-6 and 1-7
Ay = sinf cos A, + cosOcosp Ag —singp A, (1.70)

The scalar component Ay is given by

Ay = (Ara; + Agag+ Apay) . ay (1.72)
Equation 1.71 can be simplified with the help of Tables 1-5, 1-6 and 1-7
Ay =sin@sinp A, + cosBsin pAg + cosp Ay (1.72)

The scalar component A4, is given by
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A, = A. a,
A, = (Ara, + Agag+ Agay) . a, (1.73)
Equation 1.73 can be simplified with the help of Tables 1-5, 1-6 and 1-7
A, =cosO A, — sinBAg + 04, (1.74)

Equations 1.70, 1.72 and 1.74 can be written in the matrices format as

Ay sinfcosep cos@cosp —sing]|Ar
Ay| =|[sinfsing cosBsing cosq ||4e
A, cos 8 —sin0 0 Ay

We will compute these three rectangular components of Vector A and then the same
vector in rectangular coordinate system can be written as

A=Aya,+Aya, +4,a, (1.75)

Example 1-6:
Transform A = 3a, into Spherical Coordinate System at P(2,90°,45%)
Solution:

We use the following equations for the required transformation.

A, sinfcosp sinfOsing cosf 7| Ax
Ag | = [cosecosq) cosBsing —sinB || A4y
Ay —sing cos @ 0 A,

Ay [sin 90 cos45 sin90sin45 cos90
Ag | = [cos90cos45 cos90sin45 —sin90
@ | —sin45 cos 45 0

[ A, 0.707 0.707 0 1[3
Ag | = 0 0 —-1{|o
0

| A ~7.07 7.07 0

)

©
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Simplifying the equations given in the matrices format, we obtain
A=212a.+ 0ay — 2.12a4
1-15 Differential Volume in Rectangular Coordinate System

Consider three differential vectors along x, y and z-axis as shown in Figure 1-31.

dza,

dx a,
Figure 1-31: Differential Vectors

These differential length vectors are given by

dl = dx a,
dl=dya,
dl=dza,

We construct a differential volume in rectangular coordinate system with the help of
the magnitudes of the above three differential vectors as shown in Figure 1-32. The
volume of the differential rectangular box is given by

dv = dx dy dz (1.76)
The differential area in the direction of ay is given by

ds = dy dz a, (1.77)
The differential area in the direction of ay is given by

ds=dxdza, (1.78)
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o 4

Figure 1- 32: Differential Volume

The differential area in the direction of a, is given by
ds =dxdya, (1.79)
A three dimensional differential length vector extending from point P to point Q in the

rectangular box of Figure 1-33 is given by

dl = dxa, + dya, + dza, (1.80)
3Q
dl
dza,
FI
dxa,
d}ray g

Figure 1-33: Differential Length Vector
1-16 Differential Volume in Cylindrical Coordinate System

Consider three differential vectors along a,, ay and a, as shown in Figure 1-34.

p’
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These differential length vectors are given by

dl = dpa,
dl = pdoa,
dl = dza,
dza,
pdga,
dpa,

Figure 34: Differential Vectors

We construct a differential volume in cylindrical coordinate system with the help of the
magnitudes of the above three differential vectors. The differential volume is shown in
Figure 1-35.

pde

| dp
|

dz I

/J\"“‘-
_ H""‘-.. dz
H"‘--.
Sy

Figure 1-35: Differential Volume in Cylindrical Coordinate System
The volume of the differential rectangular box is given by
dv=dp X pd@ X dz (1.81)

Consider the differential surfaces in Figure 1-36. The differential area in the direction of



pdyp
I dp Ap
|
-~
dz I -
J'L""-
- H"H._ dz
) \““‘-.
S
\1&

Figure 1-36: Differential Surfaces
a, is given by
ds = pd@ X dz a,
The differential area in the direction of ay is given by
ds =dpxdza,
The differential area in the direction of a, is given by

ds = pdp Xdd X a,

N

P ~
\ H“‘h
Apﬂ-ﬁ

Figure 1-37: Differential Length Vector
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A three dimensional differential length vector extending from P to Q in the differential
cylindrical volume of Figure 1-37 is given by

dl=dpa,+pdda,+dza,
1-17 Differential Volume in Spherical Coordinate System

Consider three differential vectors along a,, ag and ags as shown in Figure 1-38.
These differential length vectors are given by

dl = dra,
dl = rdfa,

dl =rsinfdga,

rsinfdg a,

dra.

rdfag
Figure 1-38: Differential Vectors

We construct a differential volume in spherical coordinate system with the help of the
magnitudes of the above three differential vectors as shown in Figure 1-39.
The volume of the differential rectangular box is given by

dv =dr Xrsinfde X rdo

dv =1r2sin6 do dr do (1.85)
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dr
rdf

r sin Bdg

+ sin Bdg
rdf

dr

Figure 1-39: Differential Volume in Spherical Coordinate System

Consider the differential volume shown in Figure 1-40.

]

Figure 1-40: Differential Surfaces in Spherical Coordinate System
The differential area in the direction of a, is given by
ds =r?sin0df do a, (1.86)
The differential area in the direction of ay is given by
ds =rdrdf a, (1.87)
The differential area in the direction of ag is given by
ds =rsinf dodr ag (1.88)
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A three dimensional differential length vector in the spherical coordinates system is
given by

dl =dr a, +rsinfdp a, + rdfag
1-18 Position Vector

Consider Figure 1-41, a vector extending from origin to point P (x, y, z) is known as
position vector.

P(x,v, z)

L J
bt

X

Figure 1-41: Position Vector r

This three dimensional vector can be resolved into three components as shown in
Figure 1-42.

P (x,y,z)

f 3

Y

X

Figure 42: Components of Vector r
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r =xa, + ya, +za, (1.89)
1-19 Distance Vector

Consider two points P(xq,¥4,2;) and Q(x3,¥,,2,) as shown in Figure 1-43. The
Vector extending from P to Q is known as distance vector that is represesnted by
Rpg . Position vectors rp and 1, are given by

rYp = Xlax + ylay + Z1 A,

TQ = Xzax + yZay + Zy A,

z

'
P Req
Q
p
"a
»Y
X
Figure 1-43: Distance Vector Rpq
The vector sum of rp and Rp resultsin rg.
Trp + RPQ = TQ
RPQ = TQ —7Tp
Rpg = (x; —xp)a, + (v, —yay + (z; — z)a, (1.90)

The distance between points P(x4,y1,21) and Q(xy, y,,2;) is given by

Rpg = \/(xz —x1)2+ (2 = y1)2 + (2 — 71)? (1.91)
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Example 1-7:
Consider two points P and Q.
P(2,3,4) . Q457

Find (a) rp (b) g (c) Rpg (d) apq

Solution:
(a)
rp = 2a,+ 3ay + 4a,
(b)
ro =4a, + 5a, +7a,
(c)
Rpg = (4 —2)a, + (5-3)a, + (7 —4)a,
Rpg = 2a, + Zay + 3a,
(d)

apg = 0.485a, + 0.485a, + 0.728a,
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Chapter 2
Force and Electric Field Intensity

2-1 Coulomb’s Law

Consider two point charge particles Q; and @, as shown in Figure 2-1. Position vector
of Q, is r{ and position vector of Q, is r,.The distance vector extending from Q,
to Q, is R4,. The magnitude of this distance vectoris R. Coulomb’s law states that the
electric force between the two charge particles is directly proportional to the product
of Q; and Q, and is inversely proportional to square of the distance between them.

010z
R2

_ 00,
4meR?

F «

There is a force of attraction between two unlike charge particles and a force of
repulsion between two like charge particles. Force on Q, dueto Q, is given by

Q:1Q;

= a
27 AmeR2 R

origin

Figure 2-1: Two Point Charges

The force F, can be written as
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_ Q10:Rq,
z 4me R3

AS RIZ - rz - T1
And R = |T2 —T1
Therefore

_ Q10; (rz — 1)

F, =
27 4melr, —1rq|3

(2.1

Force on @, dueto Q, isgiven by

If we have n charge particles as shown in Figure 2-1a, then we apply Superposition
Theorem to find the total force on the charge of Q coulomb.

Qs
.,
L

origin

Figure 2-1a: n Charges

Assume that only charge @Q; exists in the vicinity of the charge of @ coulomb and
all other charges do not exist at all. Force on the charge of @ coulomb due to Q, is
given by

_QQ,(r—rq)

V7 4nmelr —rq3
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Force on the charge of ¢ coulomb due to @, is given by

_QQ; (r—ry)

27 4me|r — )3

Finally force on the charge of Q coulomb due to Q,, is given by

F. = QQy (r—ry)

" Ame|lr — 1,3
The vector sum of all these forces results in the total total force on Q.
F= F1+ F2+F3++ Fn

_ Q Q1(7'_7'1)+Q2(T_Tz)+Q3(T_r3)+ Qn(r_rn)

4mel |r—1q)3 |r—1,)3 lr—r33  |r—m,3

F (4)

The last equation in concise form is given by

Q N Q (r—r)

C4dmela | r—1y3
1=1

Example 2.1:

Q, = %uC is located at the origin and Q, = 100mC is located at P(8,6,0) in free
space. Find F, and F4.

Solution:

Q10 (1 — 1)

F, =
2 4me |‘r‘2—1'1|3

r, —r; =8a,+ 6a, +0a,
lry —r4l =10

9 X 10° x £ X 100 X 107° (8a, + 6a,)

Fr = 1000
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F, =0.8a, +0.6a, N
Fy =-08a,—0.6a, N
2-2  Electric Field Intensity due to a Point Charge

Consider two point charge particles Q; and Q as shown in Figure 2-2. Position vector
of the source Q,is 17 and position vector of Q is 7. The distance vector extending
from Q; to Q is R. The magnitude of this distance vectoris R.

R

Source @ at Point P

origin

Figure 2-2: Two Point Charges

The electric force on charge of Q coulomb in accordance with Coulomb’s law is given
by.

Q.0

- 4meR? ar

We want to find out the electric field intensity at point P that is caused by the source
Q4. The force on a charge of 1 coulomb at point P is known as electric field intensity. In
other words force per unit charge is known as electric field intensity. It is a vector
quantity and is always directed along the straight line joining the source and point P.
Electric field intensity is given by

g T
)

Q1

= a
4meR?2 R

(2.2)
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or

QR
= dner® ® (23)
As R=r—-nr
And R=|r-r,
Therefore
r—r
E= Qs ( 1) 2.4)

C dme|r—14|3

This is the mathematical expression for electric field intensity at point P that is
caused by the source Q;.

2-3  Electric Field Intensity due to n Point Charges

Consider n charge particles as shown in Figure 2-3. Position vector of Q; is r{; and
position vector of @, is r, and so on the position vector of Q,, is r,. We want to find
out the electric field intensity at point P that is caused by all these n number of sources.
Position vector of P is r. In order to find out the electric field intensity at point P that
is caused by all these n number of sources, we apply Superposition Theorem.

origin

Figure 2-3: n Charge Particles
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We assume that there is only one charge that is @, in the vicinity of point P and all the
remaining sources do not exist as shown in Figure 2-4. The distance vector extending
from Q;to P is r — 1.

origin

Figure 2-4: Intensity due to Q,

Electric field intensity due to Q, is given by

Qi (r—ry)

= dmelr—rP (25)

1

Now, we assume that there is only one charge that is Q, in the vicinity of point P and
all the remaining sources do not exist as shown in Figure 2-5. The distance vector
extending from Q, to P is r —1r,.

origin

Figure 2-5: Intensity due to Q,

Electric field intensity due to Q, is given by
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Q (r—ry)

T dnelr -1, (26)

2
Now, let us assume that there is only one charge that is Q3 in the vicinity of point P
and all the remaining sources do not exist as shown in Figure 2-6. The distance vector
extending from Q3 to Pis r — 3.

origin

Figure 2-6: Intensity due to Q5

Electric field intensity due to Q5 is given by

Qs (r—r3)
Es = Ame | r —1r3)3 27)

Similarly electric field intensity at point P due to Q,, is given by

Qn (1‘ - rn)

= — 2.8
dme|r —1,|3 (2:8)

n

The vector sum of all these intensities results in the total electric field intensity at
point P.

E: E1+ E2+E3+“'+ En

E= 1 Q1(r_rl)_l_Qz(r_r2)+Q3(7'_7'3)+ Qn (r—1y)

= 2.9
wmel Tr =P r—ral? | Ir—1al EETNE (29

The last equation in concise form is given by
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Q; (r
4-7'[82 r—r,l3 (2.10)

Example 2-2:
Find E in free space at P(3,0,0) caused by

(i) Q, = 9nC located at the origin.
(ii) Q, = 125nC located at (0, 0, 4).
(|||) Both Q1 and Q2

Solution:
Q)
Q1 (r—ry)
E = 1
dme | r —rq|3
r—rq;=3a,
lr—ryl =3
~ 9x10° x9x107°(3a,)
1= 27
E{= 9a, V/m
(i)
Q; (r—rmy)

27 4me|r—1y)3

r—r,=3a,—4a,
|r—73| =5

9x10° x 125 x 107°( 3a, — 4 a,)
125

ty
N
Il
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E, = 27a,—36a, V/m
(iii)
E=E,+E,
E = 36a,—36a, V/m
2-4  Electric Field Intensity due to a Line Charge

Assume that charge is uniformly distributed along the length of a line as shown in
Figure 2-7. Total charge on length L of the line is Q coulomb. Charge per unit
length is known as line charge density which is represented by p,. Unit of the line

charge density is C/m and is given by

_Q
PL L

+ + +

+

L dq{dl

+ + +

origin

Figure 2-7: Intensity due to Line Charge

Consider a small portion of the line charge which is represented by d¥. The
magnitude of charge on this small portion of the line is dQ. So, the line charge
density can be calculated with the help of following equation as well.
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_aq
pL_ d’g

Differential charge on the differential portion of the line is
dQ = p,d? (2.11)

The total charge of the siurce is given by
0=[ o at

In order to find out the electric field intensity at point P that is caused by the line
charge, we consider small portion of the source first and determine the intensity at P
that is caused by the small portion. Position vector of the small portion of the source
isryand position vector of Point P is r. The distance vector extending from dQ to P
is (r —ry). Differential electric field intensity at point P that is caused by the
differential charge is given by

dQ (r—rq)

Putting the value of dQ in equation 2.12, we obtain

_ pLdf (r—ry)

dE =
dme | r—1rq|3

(2.13)

Total intensity that is caused by the entire source

. prdf (r—r)

2.14
dme | r —1rq|3 ( )

2-5 Electric Field Intensity due to Surface Charge

Assume that charge is uniformly distributed along surface of a sheet as shown in Figure
2-8. Total charge on surface S of the sheetis Q coulomb. Charge per unit area is
known as surface charge density which is represented by ps. Unit of the surface

charge density is C/mz and is given by
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n| o

Ps =

+ +++

++%+ QD

+ +

+ b7
B

origin

Figure 2-8: Intensity due to Surface Charge

Consider a small portion of the surface charge which is represented by ds. The
magnitude of charge on this small portion of the source is dQ. So, the surface
charge density can be calculated with the help of following equation as well.

_4qQ
pS - dS
Differential charge on the differential portion of the surface is

dQ = ps ds (2.15)

The total charge of the siurce is given by
Q= f ps ds

In order to find out the electric field intensity at point P that is caused by the surface
charge, we consider small portion of the source first and determine the intensity at P
that is caused by the small portion. Position vector of the small portion of the source is
11 and position vector of Point P is 1. The distance vector extending from d Q to
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P is (r —ry). Differential electric field intensity at point P that is caused by the

differential charge is given by
dQ (r —r
up — 4Q =1
de|r —rq|3

Putting the value of dQ in equation 2.16, we obtain

ds(r—r
dE = Ps ( 1)
de | r —rq|3

Total intensity that is caused by the entire source

E- jpst(T—h)

de|r —rq|3

2-6 Electric Field Intensity due to Volume Charge

(2.16)

(2.17)

(2.18)

Assume that charge is uniformly distributed inside a volume V as shown in Figure 2-9.
Total charge inside the given volume is Q coulomb. Charge per unit volume is

known as volume charge density which is represented by p,,.

ll...’:I

+ + + +
+++ +
++ + .
++d@@v\ ! »
Q-I—-l--l-—l—\
+ + + 4+ A
+ + + + !
V Ol
origin

Figure 2-9: Intensity due to Volume Charge

Unit of the volume charge density is C/m3 and is given by

_¢
=1
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Consider a small portion of the volume charge which is represented by dv. The
magnitude of charge in this small portion of the source is dQ. So, the volume
charge density can be calculated with the help of following equation as well.

_aq
pv_dv

Differential charge in the differential portion of the volume is
dQ = p, dv (2.19)

The total charge of the siurce is given by

Q=jpudv

In order to find out the electric field intensity at point P that is caused by the volume
charge, we consider small portion of the source first and determine the intensity at P
that is caused by the small portion. Position vector of the small portion of the source is
11 and position vector of Point P is 7. The distance vector extending from dQ to
P is (r —r,). Differential electric field intensity at point P that is caused by the
differential charge is given by

dQ (r—rq)

dE = ———
dme | r —rq|3

(2.20)

Putting the value of dQ in equation 2.20, we obtain

dv(r—r
dE = Py ( 1)
de | r —rq|3

(2.21)

Total intensity that is caused by the entire source

E = fpv dv (1‘ - 1'1) (2.22)

de | r —rq|3
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2-7 Electric Field Intensity due to Infinite Line Charge

Consider an infinite line charge extending from —co to oo along z — axis as shown in
Figure 2-10. Line charge density of the source is p;. Length of the small portion of the

source is d¥. Position vector of the small portion of the source is r; and position
vector of Point P is r. The distance vector extending from df to P is (r —ry).
Electric field intensity at point P that is caused by aline charge is given by

Eo prd{’ (r—mry)

_— 2.23
de|r —rq|3 ( )

Z
[ 4]

+
+
dae |
+
ry = Za, |+
_|_

+ P

>V
+ T = pﬂ'p
_|_
_|_
x +
_|_
_|_
_|_
+
— 00
Figure 2-10: Intensity due to Infinite Line Charge
As r—ry= pa,—za,

And r—ry = p?+ 2% ,df=dz
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Therefore electric field intensity at point P that is caused by the infinite line charge is
given by

E = f pLdz (pap —za,)
) 4me (p? + z2)3/2

(2.24)

— 00

Consider the right angle triangle as shown in Figure 2-11.

I AT
li
Il
o
=
=

— o0

Figure 2-11: Infinite Line Charge
z
—= cot@
p
z = pcoth

dz = — p cosec? 0 dO

When z = —oo,then 8 = m and when z = oo,then 6 = 0, putting all these
values in equation 2.24, we obtain

60



Vs
£ j pL p cosec® 8d6(pa, — pcotb a,) (2.25)
4me (p? + p? cot? §)3/2 '
0

T

£e j p1, p* cosec? B df (a, — cotf a,) (226)
41e p3(1+ cot? g )3/2 '

/A

g P j cosec? 6 df (a, — cot 6 a,) (227)
Amtep (cosec? )3/2 '
0
[ de ( t0a,)
= 2.2
4mep j cosec 6 (2.28)

0

T
PL .
E =@f sin 6 d6 (a, — cotd a,)
0

T T
PL . .
E:@U‘ sinf df ap—fcotesdeHaZ] (2.29)
0 0
T T
PL .
E:%U‘ sm@d@ap—fcosedeazl (2.30)
0 0
V3
As fcos@d@azzo
0
V3
PL .
Therefore E=— [f sin 6 d6 ap]
4mtep
0
PL

61



PL
2mep

= a, (2.31)
If we enclose the source in a cylinder as shown in Figure 2-12, electric field intensity on

the surface of the cylinder will be constant. Similarly if we consider a line parallel to the
source then electric field intensity along this lline will be constant.

[
(&1

o 4] (o a]
F
+ r _|_
4 +
4
pi N +
O+ _ N +
1 _‘D___f?-f' -+
_|_
+ >
L[
+
4
+
+
+ +
+ +
+ _

Figure 2-12: Intensity on the Surface of a Cylinder and along a line parallel to Source

If we replace p by R and a, by ap in equation 2.31 then the same equation can be
written as

PL
2meR

ag (2.32)
Example 2-3:

A line charge is extending from z = —3 to z = 3. If the line charge density of the
source is 4nC/m, then find E at P(0,4,0).

Solution:

Consider the line charge in Figure 12a. Electric field intensity is given by
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E o fPLd{’ (r—rq)
de | r —1rq|3

(4)

3

+
ry= zZa, |+
+

+ P(0,4,0)

T r=pa, .
+
+
x +
+
+
+
+

-3
Figure 12a: Finite Line Charge
As r—ry= pa,—za,

And |r—1ry = p>+ 22 ,df=dz

Therefore electric field intensity at point P that is caused by the infinite line charge is
given by

3
_ [ pudz (pa, — za,) B
) 4me (p? + z2)3/2 (B)

-3

Let

z
—= tan@
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z= ptan@

dz = psec? 6 do

When z = —3,then 6 = —36.8 and when z = 3, then 6 = 36.8, putting all
these values in equation B, we obtain

36.8

. f pLp sec’ 8db(pa, — ptanb a,)
4me (p? + p? tan? 6)3/2

—36.8

36.8
£ J pL, p* sec? 0 db (a, —tan 6 a,)

4me p3(1 + tan? 0 )3/2

—36.8

36.8
oL f sec? 0 df (a, — tan 6 a,)

- Amtep (sec?)3/2
-36.8
36.8
pL do (a, —tanb a,)
E= |
4mep sec 0
-36.8
36.8
E= PL f cosfdf (a, —tan6 a,)
Amep £ z
—-36.8
36.8 36.8
E = PL f cosdb a, — f tan 6 cos6db a,
4mtep
| -36.8 -36.8
36.8 36.8
E = PL f cosfdb a, — f sinfdfa
Amtep P z
| -36.8 -36.8
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36.8

As f sinf6dfa, =0
-36.8
36.8
PL
Therefore E = cos6do a,
4mtep
-36.8
PL .
E= p—— Isin 013585 a,,

E_9><109><4><10‘9
N 4

(0.6 + 0.6)a,
E=108a, V/m

2-8 Electric Field Intensity due to Infinite Sheet of Charge

Consider an infinite sheet of charge which is located in x = 0 plane as shown in Figure
2-13. The sheet is divided into a very large number of narrow strips and width of each
strip is represented by dy. Width of a narrow strip is so small that it almost behaves
like an infinite line charge. We want to find out electric field intensity at point P.
consider the narrow strip on the right hand side that acts like an infinite line charge.
The surface charge density of the sheet is given by

_ _de
Ps = dydz
Line charge density of the infinite line charge is given by
_d0_ d 2.33
pL =7~ = psdy (2.33)

Distance vector extending from the infinite line charge to the point P is

R, = xa, —ya, (2.34)

Ry =/x?2+y? (2.35)
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ap = ———= (2.36)
N Jx2+y?
F4
&
—hd}rq— dy @
++++++ [FFE AT | R 4+
TR b bbb AR A A H b+ |
e ot i o T e i e e I i S i e el ol R
++++++FH AR L 4 o
++++++ [\ +vay, + + /T yae, £ L, -
SR AN R Rl
i b A I~ 1
F+r+ b R SH TR H
N N A et R ' L

X

Figure 13: Intensity due to Infinite Sheet of Charge

Electric field intensity due to this infinite line charge is given by

PL
2meR

Putting the values in equation 37, we obtain differential intensity due to the narrow

ag (2.37)

Strip on right hand side.

P dy (xa, —ya,)
2me (x2 +y?)

(2.38)

Due to symmetry, consider the narrow strip on the left hand side that acts like an

infinite line charge as well. Distance vector extending from the left hand side infinite

line charge to the point P is
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R; = xa, +ya, (2.39)

R, = {x? + y? (2.40)
xa, + ya,

2+

Electric field intensity due to this infinite line charge is calculated by putting values in

ap = (24‘1)
equation 2.37.

ps dy (xa, + yay)
dE =
2me (x2 +y?)

(2.42)

We add equation 2.38 and 2.42

Ps dy (xax - yay) n Ps dy (xax + yay)
2me (x2 +y?) 2me (x2 + y?)

dE + dE =

Due to symmetry y components of the electric field intensity cancel the effect of each
other, so we have

ps dy xa,
dE = ————— 2.43
2me (x2 +y?) (243)
ps dy xa,
E = 2.44
f 2me (x% + y?) (244)

— 00

Consider the right angle triangle as shown in Figure 2-13.

Y cotf
x
y = xcotf

dy = — x cosec? 6 dO
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Wheny = —oo, then 0 = m and wheny = oo, then 0 = 0, putting all these values
in equation 2.44, we obtain

T
psx? cosec? 6 d6 a,
E = 2.45
j 2me (x? + x? cot? 9) ( )
0
T
Ee f psx?cosec? 8 d a,
2me (x%cosec?0)
0
Y3
Ps
R f do a, (2.46)
0
E= S—Zax (2.47)

Where a, is a unit vector normal to the sheet. Let us represent this unit vector normal
to the sheet by a,,. Equation no 2.47 in generic form can be written as

E= %an (2.48)

Consider two infinite sheets as shown in Figure 2-14. We apply Super position Theorem
to find the total intensity at P.

Electric Field intensity due to positive sheet is given by

Ps

E,=—a
+ 28 n

Electric Field intensity due to negative sheet is given by

s
2¢ "

Total Electric Field intensity at P is given by

E=E,+E_=0
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tHEtt+ /)
R
++ +++ +

Figure 2-14: Intensity due to two Infinite Sheets of Charge

Consider second case of two infinite sheets as shown in Figure 2-15. We apply Super
position Theorem to find the total intensity at P.

=P
t "
///f++_++_f;;/;
+++++ 4+
++ +++ 4
4 ~Gn

Figure 2-15: Intensity due to two Infinite Sheets of Charge

Electric Field intensity due to positive sheet is given by

Ps

E,=—>—a
+ 28 n

Electric Field intensity due to negative sheet is given by

_Ps

E =
2¢e n

Total Electric Field intensity at P is given by
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E=E,+E_=0

Consider third case of two infinite sheets as shown in Figure 2-16. We apply Super
position Theorem to find the total intensity at P.

tHEvE
++t++
++ +++ +

Figure 2-16: Intensity due to two Infinite Sheets of Charge

Electric Field intensity due to positive sheet is given by

_Ps

E,. =
+ Zgan

Electric Field intensity due to negative sheet is given by

_Ps

E_ =
2¢ In

Total Electric Field intensity at P is given by

E=E++E_=p§an

Example 2-4:

A surface charge is located at x = 0. If the surface charge density of the source is
17.75 x 10715 C/m?, then find E at P(9,5,7) in free space.

Solution:
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177 % 10715
T 177x10 122%™

E=a, mV/m
Example 2-5:

A surface charge of 17.75 x 10712 % is located at x = —2, surface charge density of

another source is 17.7 X 10712 C/m? that is located at x = 2. Find E at P(0,0,0)
and E at P(4,0,0)in free space.

Solution
a.
p p
E= Z—Zax — 25 =0
b.
p p
E = Z—Zax + Z—Zax =2a, V/m
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Chapter 3

Electric Flux & Electric Flux Density

3-1 Electric Flux

Consider a point charge of Q coulomb that can move from one place to another place
as shown in Figure 3-1. There will be electric field in the vicinity of this charge. If we
place a movable unit positive in the electric field of the fixed charge it will move along a
straight line due the force of repulsion. The path or line followed by a unit positive
charge in an electric field is known as electric flux. It is a scalar quantity and is
represented by 1. The unit of electric flux is coulomb.

Fixed charge
() Movable unit Positive Charge
e + »

Electric Flux

Figure 3-1: Electric Flux

We may change the place of the movable unit positive charge around the fixed one and
can trace many more lines. The electric force, electric field intensity and electric flux
density are in the direction of arrow, in other words the direction of the arrow gives
the direction of the electric force, electric field intensity and electric flux density.

3-2  Electric Flux Density

Consider lines of electric force ¥ passing through a surface S as shown in Figure 3-2.
All the lines are normal to the surface. The electric flux per unit area defines electric
flux density and it is represented by D. It is a vector quantity and its unit is C/m?.

Mathematically

So



as

D =Da,

S =Sa,
so

Y=D.S

There is another way to compute electric flux density. We consider differential electric
flux dy passing through a small portion of the given surface thatis ds. According to
the definition, the electric flux per unit area can be calculated as

_ 4

D =
ds

Hence the differential electric flux passing through the differential area can be
computed as under

dy = Dds

Figure 3-2: Electric Flux Density
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As

ds = dsa,
dy =D.ds
Y= fD.ds

The flux passing through the closed surface is given by

¢=§D.ds

3-3  Electric Flux Density due to a Point Charge

Consider a point charge particle Q as shown in Figure 3-3. Position vector of the
source Q is 14 and position vector of P is r. The distance vector extending from Q
to P is R. The magnitude of this distance vectoris R.

R

Source Q Point P

origin

Figure 3-3: Point Charge

We want to find out the electric flux density at point P that is caused by the source Q.
The force on a charge of 1 coulomb at point P is known as electric field intensity. In
other words force per unit charge is known as electric field intensity.

Q

= —47'[ng aR (31)
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as D=c¢E
Electric flux density at point P is given by

Q

D= iz

(3.2)

It is a vector quantity and is always directed along the straight line joining the source

and point P.
or
QR
D = yPE (3.3)
As R=r—-nr,
And R=|r—-r
Therefore
r—r
D= Q( 1) (3.4)

C4m|r—-1rq3

This is the mathematical expression for electric fluxdensity at point P that is caused
by the source Q.

3-4 Electric Flux Intensity due to n Point Charges

Consider n charge particles as shown in Figure 3-4. Position vector of Q; is r; and
position vector of Q, is r, and so on the position vector of Q, is r,. We want to find
out the electric flux density at point P that is caused by all these n number of sources.
Position vector of P is .

In order to find out the electric flux density at point P that is caused by all these n
number of sources, we apply Superposition Theorem.
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origin
Figure 3-4: n Charge Particles
We assume that there is only one charge that is @ in the vicinity of point P and all the

remaining sources do not exist as shown in Figure 3-5. The distance vector extending
fromQ, to P is r —ry.

origin

Figure 3-5: Density due to Q,

Electric flux density due to Q, is given by

_ Q(r—r1y)

Now, we assume that there is only one charge that is @, in the vicinity of point P and

all the remaining sources do not exist as shown in Figure 3-6. The distance vector
extending from Q, to P is r —1r,.
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origin
Figure 3-6: Density due to Q,

Electric flux density due to Q, is given by

D, = Q2 (r—ry)

CAm|r—1y3 (3:6)

Now, let us assume that there is only one charge that is Q3 in the vicinity of point P
and all the remaining sources do not exist as shown in Figure 3-7. The distance vector
extending from Q; to P is r—r3.

origin

Figure 3-7: Density due to Q5
Electric flux density due to Q5 is given by

D, = Q3 (r—rj3)

= 3.7
4 | r —1r3g)3 (37)

Similarly Electric flux density at point P due to Q,, is given by
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Dn _ Qn (1‘ _rn)

4| r—1,3 (38)

The vector sum of all these densities results in the total electric flux density at point
P.

D= D1+ D2+D3++ Dn

iQl(r_rl)_l_QZ(r_r2)+Q3(r_r3)+ Qn(r_rn)

D = 3.9
] P e P N E B P E
The last equation in concise form is given by
n
1 i (r—r;
p=Lyulr-r) (3.10)

B 41 4 | —1y3
i=1
Example 3-1:
Electric flux density in a region is given by

D = x*za, +xy*a, mC/m?
Determine the flux passing through the following surface ia a direction away from the
origin.

y=3 0<x <3, 0<z <4
Solution:
ds = dxdza,

D.ds = x*zdxdz

The flux passing through an open surface is given by

1/)=fD.ds

3 4
tpszxzzdxdz
00
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Example 3-2:

100 mC charge is located at the origin, find the flux passing through the surface
r=1, 0<0 <m, 0<0<m

Solution:

ds =1r%sinf df do a,

Q
b= 4712 ar

_ 100x107°

a
47?2 T

e 100 x 1073 0do d
s = yp= sin )

The flux passing through an open surface is given by
Y = f D.ds

100 x 10-3f

T
sin0 dé@ fd(b
4
0

0

100 x 1073
=— X

2
4 T

¥ =50mC
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3-5 Electric Flux Density due to a Line Charge

Assume that charge is uniformly distributed along the length of a line as shown in
Figure 3-8. Differential charge on the differential portion of the line is

dQ = p,d¢ (3.11)

In order to find out the Electric flux density at point P that is caused by the line charge,
we consider small portion of the source first and determine the density at P that is
caused by the small portion. Position vector of the small portion of the source is ryand
position vector of Point P is 1. The distance vector extending from dQ to P is
(r — r,). Differential electric flux density at point P that is caused by the differential
charge is given by

dD = dQ (r—rq)

= —— -7 12
4 |r — 1|3 (3.12)

+ + +

+

L do{dl

+ o+ 4

origin

Figure 3-8: Electric Flux Density due to Line Charge

Putting the value of dQ in equation 3.12, we obtain
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_ pdt =1y

Total density that is caused by the entire source

_ [pudb =Ty
D= f4n|r_r1|3 (3.14)

3-6 Electric Flux Density due to Surface Charge

Assume that charge is uniformly distributed along surface of a sheet as shown in Figure
3-9. Total charge on surface S of the sheet is Q coulomb. Charge per unit area is
known as surface charge density which is represented by ps. Differential charge on
the differential portion of the surface is

dQ = ps ds (3.15)
Q
+ + + 4+
+ dQ {ds
+ + + R
+ + + +
5

origin

Figure 3-9: Density due to Surface Charge

In order to find out the electric flux density at point P that is caused by the surface
charge, we consider small portion of the source first and determine the density at P
that is caused by the small portion. Position vector of the small portion of the source is
14 and position vector of Point P is 7. The distance vector extending from dQ to P
is (r — ry). Differential electric flux density at point P that is caused by the differential

charge is given by
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_dQ (r—rq)
D= 4 (3.16)

Putting the value of dQ in equation 3.16, we obtain

_ psds(r—ry)
dD = yrapT——E (3.17)

Total density that is caused by the entire source

_ [psdsr—ry)
D= f prP——E (3.18)

3-7 Electric Flux Density due to Volume Charge

Assume that charge is uniformly distributed inside a volume V as shown in Figure 3-10.
Total charge inside the given volume is Q coulomb. Charge per unit volume is
known as volume charge density which is represented by p,,.

+ + + +
+ + + +
+ + + + . ,
1
o |+ + delhg »e
+ + + [
+ + + +
+ 4+ 4+ o+ 1 T
V = w
origin

Figure 3-10: Density due to Volume Charge

Differential charge in the differential portion of the volume is

dQ = p, dv (3.19)
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In order to find out the electric flux density at point P that is caused by the volume
charge, we consider small portion of the source first and determine the intensity at P
that is caused by the small portion. Position vector of the small portion of the source is
11 and position vector of Point P is r. The distance vector extending from dQ to P is
(r — r,). Differential electric flux density at point P that is caused by the differential
charge is given by

_dQ(r—mry)

dD =
4| r —rq|3

(3.20)

Putting the value of dQ in equation 3.19, we obtain

dv (r —r
dD:.Dv 17( 1)
4| r —1rq|3

(3.21)

Total density that is caused by the entire source

D= .]-pv dv (1‘ B T1) (3.22)

4| r —rq|3

3-8 Electric Flux Density due to Infinite Line Charge

Consider an infinite line charge extending from —oo to o along z — axis as shown in
Figure 3-11. Line charge density of the source is p;. Length of the small portion of the
Source is df. Position vector of the small portion of the source is r; and position
vector of Point P is r. The distance vector extending from df to Pis (r—ry).

Electric field intensity at point P that is caused by a line charge is given by

__PL
2Tep

a, (3.23)

as D =¢E
Electric flux density at point P is given by

p="r

= 9 (3.24)

ap
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Figure 3-11: Electric Flux Density due to Infinite Line Charge

If we enclose the source in a cylinder as shown in Figure 3-12, electric flux density on
the surface of the cylinder will be constant. Similarly if we consider a line parallel to the
source then electric flux density along this line will be constant.

» S

h 4

pa,

| +++ S

-+
-+
-+

Figure 3-12: Density on the Surface of a Cylinder and along a line parallel to Source
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3-9 Electric Flux Density due to Infinite Sheet of Charge

Consider an infinite sheet of charge which is located in x = 0 plane as shown in Figure
3-13. We want to find out electric flux density at point P. As electric field intensity at
point P that is caused by a line charge is given by

P
E=2—f€ax (3.25)
Therefore
D=%ax (3.26)
Z
F
+d}ri— dy &
++++++ I | 4+ +
B T o L kot R i skl o SNSRI
e SR SR o i e e i e e i ol B i o S i e i o ey R
I e e i T i i i i i P g .
++++++ [\t +-va, + +/ Ftya, 11 H L L T
b+ [\ F b fe TS T oLy
++ ++ ++ [+ Hoitiy
++ ++ ++ [+ +
I N e

x
Figure 3-13: Electric Flux Density due to Infinite Sheet of Charge

Where a, is a unit vector normal to the sheet. Let us represent this unit vector normal
to the sheet by a,, . Equation no 3.26 in generic form can be written as

D= %an (3.27)
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3-10 Gauss’s Law

Consider a closed surface in the form of a sphere of radius r as shown in Figure 3-14. A
point charge of Q coulomb is located at the center of the sphere. We consider a point P
on the small portion ds of the sphere and the electric flux density at this point is given
by

D = mar (328)

I

@,

Figure 3-14: Charge of Q coulomb in a Sphere of Radius r

The electric flux passing through the small portion of the sphere in the outward
direction is given by

dy = D.ds (3.29)

Consider the small portion ds of the sphere as shown in Figure 3-15, the mathematical
expression for ds is given by

ds = r?sin6dfdda,

rdd /P
rsinfdd

a,

Figure 3-15: Small porion of the Sphere
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The electric flux passing through the differential portion of the surface is calculated as

__© 2
dy = - a,.r“sinfdfdda,

dy = 4Q—n sin8dodQ (3.30)

The electric flux passing through the closed surface in the outward direction is
calculated as

Y= %D.ds
T 2T Q .
= —sinfdedo 3.31
=] | gasin (331)
Q T . 2
= — 0do do
Y 4nj; sin J;
Q T 21
¥ = (=cos6)g x (9);
- Lo

Y = _(fD.ds =( (3.32)
As the charge of Q coulomb is enclosed by the closed surface, therefore

Y = %D-ds = Qenclosed (3.33)

This is the mathematical model of Gauss’s Law, which states that electric flux passing
through a closed surface is equal the charge enclosed by the closed surface. Let us
consider this charge of Q coulomb in a very small sphere as shown in Figure 3-16.
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Figure 3-16: Charge of Q coulomb in a Closed Surface

The total flux generated by the source of Q coulomb will pass through this closed
surface in the outward direction. That is

Y, = %D.ds =qQ
So we conclude that the total flux generated by a source is equal to the charge on the
source.
Example 3-3:

Volume charge density of

p, = 4x z? cos %/ C/m?3

is located in a region defined by

0 <y <314, 0<x <1, 0<z <3
Determine the electric flux passing through this surface in the outwared direction.
Solution:

The surface in a closed rectangular suface. According to Gauss’s law, the flux passing
through a closed surface in the outward direction is equal to the charge enclosed by
the closed surface.

Y = %D- ds = Qenciosed

dv = dxdydz
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Qenclosed = fpvdv

Therefore the flux passing through this closed surface is given by

1 3 3.14
Q=4fxdxfzzdzf cosgdy
0 0 0
<2 |t 2313 oy 314
YV=4|—=| X |—= ><2|sm—|
2 |, 31,

PYp=4 X l X g X2x1
2 3
PY=36C
Example 3-4:
Volume charge density of
py, = 4p z3 mC/m3
is located in a region defined by
0 <p<3, 0<0 <2m, 0<z <4
Determine the electric flux passing through this surface in the outwared direction.

Solution:

The surface in a closed cylendrical suface. According to Gauss’s law, the flux passing
through a closed surface in the outward direction is equal to the charge enclosed by
the closed surface.

Y = %D- ds = Qenciosed

dv = pdp d® dz
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Qenclosed = fpvdv

Therefore the flux passing through this closed surface is given by

3 4 21
Q =4><10‘3fp2dp fz:“dzf l0)
0 0 0

3

X
0

3
Y =4x10"3 p?

27
P =4 x10‘3x?x64><27r

Y =144C
Example 3-5:
Volume charge density of
p, = 1 cos?@® mC/m3
is located in a region defined by
0 <r<s, 0<0 <2m, 0<b<m
Determine the electric flux passing through this surface in the outwared direction.
Solution:

The surface in a closed spherical suface. According to Gauss’s law, the flux passing
through a closed surface in the outward direction is equal to the charge enclosed by

the closed surface.

Y = %D- ds = Qenciosed

dv =1r2sin0 do dr do
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Qenclosed = fpvdv

Therefore the flux passing through this closed surface is given by

4 T 21
Q= 10—3fr3dr fsin@d@ f cos?> @ do
0

0 0

4 2T
Y =103 X |—cos€|’gx|—
0 2o

4
4

YP=10"3X64X2X™m

Y =0.402C
3-11 Applications of Gauss’s Law

3-11-1 Coaxial Cable

A coaxial cable consists of two conductors, the inner conductor of radius a and the
outer conductor of radius b as shown in Figure 3-17. There is a dielectric material in
between the two conductors that has a dielectric constant of &,.. Positive charge is
uniformly distributed on the outer surface of the inner conductor of the coaxial cable.
The surface charge density of the inner conductor is represented by Ps;,,- According to
electrostatic induction, the positive charge on the outer surface of the inner conductor
will induce the same amount of negative charge on the inner surface of the outer
conductor.

Surface area of length L of the inner conductor can be calculated with the help of
Figure 3-18. Surface area of length L of the inner conductor

Sin = 2mal
The charge on length L of the inner conductor

Qin = Ps;,, X 2mal (3.34)
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:|+ | +|: +++++++++++++ 1+ +
N A T A
PR ) e e e b
U ) + 2ma >

— o0
Figure 3-17: Infinite Coaxial Cable | Figure 3-18: Surface Area of Inner Conductor

Surface area of length L of the outer conductor can be calculated with the help of
Figure 3-19.

Figure 3-19: Surface Area of Outer Conductor
Surface area of length L of the outer conductor
Sout = anL

The charge on length L of the outer conductor
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Qout = Ps,,, X 27bL (3.35)

According to electrostatic induction Phenomenon

Qout = — CQin (3.36)

Ps gye X 2TDL = —ps, X 2mal (3.37)
—ps. X a

S our = —lg (3.38)

We are going to find out the electric field intensity at different location of coaxial cable.
In case 1, we consider a point in the dielectric material of the coaxial cable as shown in
Figure 3-20.

Z — axis

Figure 3-20: Point in the Dielectric Material of the Coaxial Cable

Casel:a<p<b
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In order to determine the intensity at P, we apply Gauss’s law. For the application of
Gauss’s law consider a closed surface in the form of a cylinder of radius p. The top view
of this scenario is shown in Figure 3-21.

Figure 3-21: Top View of Inner Conductor inside the Gaussian Cylinder

Obviously the entire inner conductor is located inside the closed Gaussian cylinder; we
assume that the radius of the inner conductor is so small that it almost behaves like an
infinite line charge. The electric field intensity due to an infinite line charge is given by

__PL
2TEP

a, (3.39)

Where p; of the inner conductor is computed from equation 3.34 as

QLL'” =ps X 2ma (3.40)
m
Ps.. X 2ma
E — m
2mep %
. Xa
E= ps”;—pa,, (3.41)

Electric flux density at the point under observation is given by

_pSinxa
p

D (3.42)

ap
In case 2, we consider a point outside the coaxial cable as shown in Figure 3-22.

Case2:p > b
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In order to determine the intensity at P, we apply Gauss’s law. For the application of
Gauss’s law consider a closed surface in the form of a cylinder of radius p. The top view
of this scenario is shown in Figure 3-23.0bviously the entire coaxial cable is located
inside the closed Gaussian cylinder. We apply the Gauss’s law over here, which states
that electric flux passing through a closed surface is equal the charge enclosed by the
closed surface.

£ —axis

_.,.FI

Figure 3-22: Point outside of the Coaxial Cable

Y = fD-dS = Qenclosed (3.43)

As Qenciosea = Q + (_Q) =0
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Figure 3-23: Top View of Coaxial Cable inside the Gaussian Cylinder
So Y= %D.ds =0 (3.44)
Therefore D = E =0

3-11-2 Spherical Charge

The Charge is uniformly distributed on the outer surface of a sphere of radius a as
shown in Figure 3-24. We want to find out the electric field intensity inside and outside
the source.

+ + +
+ +
- +
+ +

S

Figure 3-24: Spherical Charge
Surface area of the sphere is given by
S = 4ma?
Charge on the surface of the sphere is given by
Q = ps X 4ma? (3.45)

Consider a point outside the source, the radial distance between the center of the
source and point P is represented by r.In order to determine the intensity at P, we
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apply Gauss’s law. For the application of Gauss’s law consider a closed surface in the
form of a sphere of radius r as shown in Figure 3-25.

Figure 3-25: Point outside the Spherical Charge

The entire source is located inside the Gaussian surface. We assume that the radius of
the source is so small that it almost behaves like a point charge.

The electric flux density due to point charge is given by

Q
D = mar (346)

Putting the value of Q in equation 3.46, we obtain

ps X 4ma’
= 54‘7(1,- (347)
X a?
D= psrz a, (3.48)

Consider a point inside the source, the radial distance between the center of the source
and point P is represented by r.In order to determine the intensity at P, we apply
Gauss’s law. For the application of Gauss’s law consider a closed surface in the form of a
sphere of radius r as shown in Figure 3-26.

- +
(H;
_|_
et
Figure 3-26: Point inside the Spherical Charge
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The source is located outside the Gaussian surface. No charge has been enclosed by the
Gaussian surface.

Y = fD.dS = Qenclosed (3.49)

As Qenciosea = 0

So Y = fD.ds =0 (3.50)

Therefore D = E =0

Example 3.6:
Surface charge density of 100 uC/m? is located at r = 2. Find D and E at
r = 4 in free space.

Solution:

ps X a’

D

r2 T

100 x 107° x 4
D=

16 &
D = 25a, uC/m?

_ 25x% 107% x 1012
B 8.85

a’T
E =282x 10°a, V/m
3-12 Maxwell’s First Equation

A source in the form of volume charge is enclosed in a Gaussian surface as shown in
Figure 3-27. The total charge of the source is given by

Q= fpv dv (3.51)

98



<—— GaussianSurface

Volume Charge

Figure 3-27: Volume Charge inside a Gaussian Surface

The volume charge is located inside the Gaussian surface. We apply the Gauss’s law
over here, which states that electric flux passing through this closed surface is equal
the charge enclosed by the closed surface.

Y = éD-dS = Qenclosed (3.52)

Evidently, equation no 3.52 can be written as

ng.ds = fpv dv (3.53)

The Divergence Theorem states that

D.ds = | (V.D) dv (3.54)
pp.as=|

Where (V.D) stands for the divergence of Vector D.

Divergence of vector D in Rectangular Coordinate System is given by

VD—aD"+aDy+aDZ 3.55
T ax 0y 0z (3:55)

Divergence of vector D in Cylindrical Coordinate System is given by
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( )1600 oD,
pap PP p 00 0z

Divergence of vector D in Spherical Coordinate System is given by

1 0Dy N 1 0Dy
rsing 09 rsing

10
V.D =——(?D
Equation no 3.52 can be written as

f(V.D) dv = fp,, dv
V.D = p,
The last equation is known as 1%t equation of Maxwell.
Example 3-7:
If the electric flux density is given by
D=x*yza,+ x*za,+ yxa, mC/m?
Determine p,, (b) if this p, is located inside the closed surface defined by
0<x<20<y<20<z<?2
Then determine the flux passing this surface.
Solution:
V.D = p,

aD, D, 4D,
v.D= ox + oy + 0z

p, = 2xyz mC/m3
(b)

dv = dxdydz

100

(3.56)

(3.57)

(3.58)

(3.59)



l/)=f(V.D)dv = fpvdv
2 2 2
1p=10‘312xdxfydyfz dz
0 0 0

2

X
0

2

X
0

2 2

2 2

y Z
=2x1073| = | x|
v 2 2

0

Y=16x1073C
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Chapter 4

Energy and Voltage

4-1 Electrical Energy

Consider a source of Q; coulomb that creates an electric field intensity of E v/m as
shown in Figure 4-1. There will be a force of repulsion on the charge of Q coulomb and
it will move from the initial point A to the final point B in the direction of field.

E ——
Ql A B
[ ] L - s
Source Q d¢

Figure 4-1: Electric Field Generated by Source Q,

In order to find out the energy that is supplied by source Q; to move this charge of Q
coulomb from the initial point A to the final point B, we consider a very small portion
of the distance in the direction of intensity

dé =df a,
The electric force and electric field intensity are given by
F=Fa,
E=Fa,

The differential energy supplied by the source to move the charge of (@ coulomb
along the differential distance d# is given by

dw = Fd¥f (4.1)
Equation 4.1 can be written as

dw = F.d# (4.2)
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The electric force on the charge of Q coulomb is given by
F = QE
Therefore
dw = QE.d¥¢ (4.3)
The total energy supplied by the source to move the charge of Q@ coulomb from the
initial point A to the final point B is given by

B
W= 0 f E.df (4.4)
A

We need an external source of energy if we want to move the charge of Q coulomb
from the initial point B to the final point A against the field of the source as shown in
Figure 4-2.

E ——
Q: 2
[ ] . 8
Source d¢
Q

Figure 4-2: Moving a Charge of Q) coulomb against the Field

The differential energy that is required to move this charge of Q coulomb along the
differential distance d¥f against the field is given by

dw = —F.d# (4.5)
dw = —QE.d¢ (4.6)

The total energy which is required to move the charge of Q coulomb from the initial
position B to the final position A against the field is given by
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A
W = —Qf E.de (4.7)
B

4-2 Line Integral

Energy will be required to move a charge of Q coulomb from the initial point B to the
final point A in a uniform electric field E as shown in Figure 4-3. To determine this
energy, we divide the entire path into a very large number of very small segments.
These segments are represented by ALy, AL,, ALz, AL,, ALs, ALg and AL~.

A

Q 5 ol
Figure 4-3: Moving a Charge of Q Coulomb in a Uniform Field

The energy that is required to move this charge of Q@ coulomb along the small
segment AL, is given by

AW, = —QE.AL, (4.8)

The energy that is required to move this charge of @ coulomb along the small
segment AL, is given by

AW, = —QE.AL, (4.9)

The energy that is required to move this charge of @ coulomb along the small
segment AL3 is given by

AW, = —QE.AL, (4.10)
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And so on, the energy that is required to move this charge of Q coulomb along the
small segment AL~ is given by

AW, = —QE.AL, (4.11)

The total energy will be equal to the sum of all these energies, that is

W = —QE.AL, — QE.AL, — QE.AL; — - — QE. AL, (4.13)
W = —QE.(ALy + ALy + AL; + AL, + ALg + ALg + AL;) (4.14)

As the vector sum of ALy, AL,, AL3, AL4, ALs, ALg and AL results in Lg, as
shown in Figure 4-4.

E

Figure 4-4: Displacement Vector between Points A and B
ALy + AL, + AL3; + ALy + ALs + ALg + AL; = Ly
W = —QE.Lp,4 (4.15)

We conclude that we can choose any path between the two points to move the charge
of Q coulomb from the initial position B to the final position A as the same amount of
energy will be expended. This energy can be calculated with the help of following
equation as well
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A
W = —Qf E.d¢ (4.16)
B

As electric field intensity is uniform, therefore

A
W = —QE.f de (4.17)
B
As
A
j d‘g = LBA
B
Therefore
W = —QE. Lgy (4.18)
Example 4-1:

Find the energy that is required to move a charge of 2mC from Q(6, 8,0)to P(0, 0,0)
against the electric field intensity E = 2xa, + 4ya, V/m.

Solution:

The charge is moved along the straight segments from point Q(6, 8, 0) to P(0, 0, 0)
as shown in Figure 4-5.

Consider Path C; : P(0,00) C (0,8,0)

i y— axis
=8, dy=0
y y c
z=0, dz=0
Q(6,8,0)
0<x <6
¥
df = dxa, + dya, + dza, x — axis
de = dxa, Figure 4.5: Straight Segments
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E.df = 2xdx

Using

W, = —QfE.de

0

W, = —4 X 10‘3fxdx
6

2\ 0
x
W, =—-4x1073 % <7>

6
W, =72m]

Consider Path C, :

0<y <8

df = dxa, + dya, + dza,

d¢ = dya,
E.df = 4ydy
W, = —QfE.df

0

W, = —8 x 10‘3fydy

8

¥\’
WZ =-8x1073x (7)
8
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W=Ww,+W,
W =0.328]
4-3 Voltage or Potential Difference

We want to move the charge of @ coulomb from the initial position B to the final
position A against the field of the source as shown in Figure 4-6.

E ——
Q1 5
. L = ' ]
Source dé
Q

Figure 4-6: Moving a Charge of Q coulomb against the Field

The amount of energy which is required to move the charge of Q coulomb from the
initial position B to the final position A against the field is given by

A
W = —Qf E.d¢ (4.19)
B

This energy is electrical energy. The amount of energy which is required to move a unit
positive charge from the initial position B to the final position A against the field is

known as the voltage or potential difference between points A and B as shown in
Figure 4-7.

Thus voltage V,p is calculated as

A
Vag = % = —f E.d¢ (4.20)

B
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Q4 A B
] . — s
Source a¢
< + Unit Positive Charge

Figure 4-7: Moving a unit Positive Charge against the Field
Question 4.2:

The two points Q(6,8,0) and P(0,0,0) are located in the electric field intensity E =
2xa, + 2ya, V/m, find Vpg.

Solution:
Consider the straight segments from point Q(6,8,0) to P(0,0,0) as shown in Figure 4-8.

Consider Path C; : P(0,0,0) C (0,8,0)

i y— axis
=8, dy=0
y y c,
z=0, dz=0
Q(6,8,0)
0<x <6
L J
df = dxa, + dya, + dza, x — axis
de = dxa, Figure 4-8: Straight Segments
E.df = 2xdx
Using
Vl - - f E. d‘g
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Consider Path C, :

0<y <8
d¢ = dxa, + dya, + dza,
d¢ = dya,

E.df = 2ydy

w:—fEdf

0
I@=—2fww

8

0

yZ

V=2 (5
8

V, = 64v
V=V, +V,

V=100v
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4-4 Voltage due to a Point Charge

The electric field intensity at any point in the field of the source Q is given by

Q

= a
4rer? "

(4.21)

Consider two points A and B in the field of the source as shown in Figure 4-9. We know
that the amount of energy which is required to move a unit positive charge from the
initial position B to the final position A against the field of the source is known as the
voltage between points A and B. The voltage V,z is calculated as

A

B

Consider d# in the direction of intensity

d¢ = dra,
Therefore
E —>
Source A B
-——e s
T daf
& + Unit Positive Charge
e
A
TB g

Figure 4-9: Voltage between Points A and B

Q X dr
4me 2

E.d¢ = (4.23)
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Putting this value in equation 4.22, we obtain

Vi = frAQXdr (4.24)
4B rg ATET? '
yoo__Q [trar (4.25)
4B dme ), T2 '

Q 11
Vis = e | 7
B
Thus the voltage between A and B is given by

1 1

=
Vig=—|— — —
4B " anelr, Tg

As
VAB = VA - VB (4‘26)

Therefore absolute potential at point A

Q
V, = 4.27
A7 4me T4 ( )
Therefore absolute potential at point B
Q
Vg = 4.28
B 4nme Tg ( )

The generic form of the potential that is caused by a point charge is given by

Q

Amer

(4.29)

Consider a point charge particle Q as shown in Figure 4-10. Position vector of the
source 0 is 1 and position vector of P is r. The distance vector extending from Q to
P is (r — ry). The potential at point P is given by

Q

V=———7""—"—#—4 4.30
4me |r — rq| ( )
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(r— T:L:]

Source @ Point P

origin

Figure 4-10: Point Charge
Question 4-3:

The two points B(0,8,6) and A(0,4,3) are located in the electric field intensity of a
point charge of Q = 4nC, if this charge is located at the origin, then (a) find V,5z and
(b) find V, if V=0 at co.

Solution:
r,=5m and 1z =10m
As
1 1
=z
Therefore
Vg = 36[1— - l
5 10
Vg =36V
As
Va = 471?5 T4
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36
VA=?=7.2V

4-5 Potential due to n Point Charges

Consider n charge particles as shown in Figure 4-11. Position vector of Q; is r{ and
position vector of Q, is r, and so on the position vector of Q,, is 1,,. We want to find
out the potential at point P that is caused by all these n number of sources. Position
vectorof Pis r.

origin

Figure 4-11: n Charge Particles

In order to find out the potential at point P that is caused by all these n number of
sources, we apply Superposition Theorem. We assume that there is only one charge
that is Q in the vicinity of point P and all the remaining sources do not exist as shown
in Figure 4-12. The distance vector extending from Q; to P is r — 1.

origin

Figure 4-12: Potential due to Q,
Potential due to Q; is given by
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Q1

B dme | r—1q|

(4.31)

Vi

Now, we assume that there is only one charge that is Q, in the vicinity of point P and all
the remaining sources do not exist as shown in Figure 4-13. The distance vector
extending from Q,to Pis r — 1.

origin
Figure 4-13: Potential due to Q,

Potential due to Q, is given by

Q2
V, = 4.32
z dite | r — 14| ( )

Now, let us assume that there is only one charge that is Q5 in the vicinity of point P and
all the remaining sources do not exist as shown in Figure 4-14. The distance vector
extending from Q; to P is r —1j3.

origin

Figure 4-14: Potential due to Q3

115



Potential due to Q5 is given by

V, = < (4.33)
dmte | r — 13|

Similarly Potential at point P due to @Q,, is given by

Vv, = On (4.34)
Aite | — 1,

The sum of all these potentials results in the total potential at point P.

1 Q1 Q> Qs Qn

dme || r — 1] | r—1,| | r — 73] | r— 1,3

The last equation in concise form is given by

n
p = 1 Z Qi
Ame la|r — 1y
1=1

4-6 Potential due to a Line Charge

Assume that charge is uniformly distributed along the length of a line as shown in
Figure 4-15. Differential charge on the differential portion of the line is

dQ = p,dé (4.35)

In order to find out the potential at point P that is caused by the line charge, we
consider small portion of the source first and determine the potential at P that is
caused by the small portion. Position vector of the small portion of the source is ryand
position vector of Point P is r. The distance vector extending from dQ to P is (r — ry).
Differential potential at point P that is caused by the differential charge is given by
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dQ

dV = ——— 4.36
4me |r — rq| ( )
Q
_|_
+
_|_
+
L dg{dl
_|_
+
_|_
_|_
origin
Figure 4-15: Potential due to Line Charge
Putting the value of dQ in equation 36, we obtain
pLdt
dV = ——— 4.37
4me |r — rq| ( )
Total potential that is caused by the entire source
pLdt
V=|—— 4.38
f 4me |r — rq| ( )

Example 4-4:

The point P(4,0,0) is located in the electric field intensity of a line charge of p, =
20 nc/m, if this line charge is locatedat y = 0,z =0 and =1 < x <1, then find Vj.

Solution

The potential that is caused by the entire source is given by
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d¢
v, = f PL

4dme |r — rq|
Consider Figure 4-16
A
4t -1
+
_|_
Ll
Til +
Ty df =dx
r +4 1
P(4,0,0)
v
x

Figure 4-16 for Example 4-4
df = dx

lr—ry=4—x

Vp = —1801In (4 — x)!,
Vo =91.94V

Example 4-5

The point P(4,0,0) is located in the electric field intensity of a line charge of
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pr = 4 nc/m, if this line charge is located at y = 0,x = 0 and —3 < z < 3, then find
Vp.

Solution

The potential that is caused by the entire source is given by

f pLdt
Vp = | ——————
4dme |r — rq|
Consider Figure 4-17
=z
4
4t 3
+ dz
+ >y
P(4,0,0)
_|_
+1 _3
v

Figure 4-17 for Example 4-5
p=+4

df = dz

lr — 1l =/ p? + 22
Vp = 36 fg dz
: -3 4Jp?+2z?
Let
z=ptan@
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dz = psec?6do

v _36fpsec20d0
P p sec

Vp =36fsec@d9

Vp =361In (secf +tan @)

Z++/p? + 22
V, = 36In (+)i3

Vo =49.9V

4-7 Potential due to Surface Charge

Assume that charge is uniformly distributed along surface of a sheet as shown in Figure
4-18. Total charge on surface S of the sheet is Q coulomb. Charge per unit area is
known as surface charge density which is represented by ps. Differential charge on
the differential portion of the surface is

dQ = ps ds (4.39)

In order to find out the potential at point P that is caused by the surface charge, we
consider small portion of the source first and determine potential at P that is caused by
the small portion. Position vector of the small portion of the source is r; and position
vector of Point P is r. The distance vector extending from dQtoPis (r—ry).
Differential potential at point P that is caused by the differential charge is given by

dQ

aVv = ——
4me |r — rq|

(4.40)
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+ + + +
+—|—r§_|_
-I-—;:|-|—

origin

Figure 4-18: Potential due to Surface Charge

Putting the value of dQ in equation 4-40, we obtain

ps ds
dV = ——— 4.41
4me |r — rq ( )
Total potential that is caused by the entire source
ps ds
V= | ——— 4.42
f 4me |r — rq| ( )

4-8 Potential due to Volume Charge

Assume that charge is uniformly distributed inside a volume V' as shown in Figure 4-19.
Total charge inside the given volume is Q coulomb. Charge per unit volume is
known as volume charge density which is represented by p,,. Differential charge in
the differential portion of the volume is

dQ = p, dv (4.43)

In order to find out the potential at point P that is caused by the surface charge, we
consider small portion of the source first and determine potential at P that is caused by
the small portion. Position vector of the small portion of the source is r; and position
vector of Point P is r. The distance vector extending from dQ to P is (r — ry).
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B
=)

++ —|—9|+
Y

origin
Figure 4-19: Potential due to Volume Charge

Differential potential at point P that is caused by the differential charge is given by

dv = dq 4.44
 dme|r —1q| (4-44)

Putting the value of dQ in equation 4.44, we obtain

py dV

dV = ————— 4.45
4me |r — rq| ( )
Total potential that is caused by the entire source
pv dV
V= | ——m— 4.46
f 4me |r — rq| ( )

4-9 Potential Difference due to Infinite Line Charge
Consider an infinite line charge extending from —co to o along z — axis as shown in
Figure 4-20. Line charge density of the source is p;.The radial distance between the

source and point A is p. Electric field intensity at point P that is caused by the infinite

line charge is given by

_ P
E= omep a, (4.47)
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Figure 4-20: Potential due to Infinite Line Charge

The total energy which is required to move the charge of Q coulomb from the initial
(4.48)

position B to the final position A against the field is given by

A
W = —Qf E.d¢
B

Consider d¥ in the direction of intensity
d¢ = dpa,

(4.49)

X d
E.de="2"7%
2mep

Therefore

X d
L > 2P (4.50)

A
W= _QL 2mep
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_ QpL B
W = 2—7_[8111 (Z) (4‘51)

Thus the voltage between A and B is given by
_ P B
Vig = e In ( A) (4.51)

Example 4-6

The two points B(0,8,0) and A(0,4,0) are located in the electric field intensity of an
infinite line charge of p, = 5.56 X 1071° C/m if this line charge is located along z —
axis, then find V3.

Solution

The voltage between A and B is given by

_ P B
Vap = anln (A)

L, _556x107 8
a8 = 55ex10-11 " ()

VAB = 69 V
4-10 Potential Gradient

Consider the source in the form of point charge as shown in Figure 4-21. The electric
field intensity at any point P in the field of the source Q is given by

Q
E=——a, (4.52)

The potential that is caused by a point charge is given by
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V= (4.53)

Q =

Figure 4-21: A Point in the Field of Point Charge

Gradient of V in Rectangular Coordinate System is given by

av 5)4 av

+t gy Gt 5% (4.54)

Gradient of V in Cylindrical Coordinate System is given by

VV—aV +16V +6V 4.55
_apap p@@am azaz (4.55)

Gradient of V in Spherical Coordinate System is given by

av 1 odv 10V

VW =— — - = 4.56
ar & + rsind 9g + r a0 %o (4-56)
So we determine the Gradient of V in Spherical Coordinate System
VW =— < a (4.57)
Amer? T

Comparing equation 4.57 with equation 4.52, we obtain relationship between electric

field intensity and potential
E=-VV (4.58)

4-11 Potential due to Electric Dipole

An electric dipole is located on the z — axis as shown in Figure 4-22. Separation

between the positive charge particle and the negative charge particle of the electric

dipole is very small and is represented by d. Center of the dipole is located at the origin

of the rectangular coordinate system. We want to find potential and electric field

intensity at point P. Distance between the positive charge and point P is 7y, distance
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between the negative charge and point P is , and distance between the center of the
electric dipole and P is r. We assume that the point under observation is located far
away from the dipole. In order to compute the potential at point P, we apply

Superposition Theorem.

v
-

Figure 4-22: Potential due to Electric Dipole

Potential due to positive charge of the dipole is given by

Q

V, = 4.59
Y 4men ( )
Potential due to negative charge of the dipole is given by
—Q
= 4.60
4me T, ( )

According to Superposition Theorem, the potential at point P is given by

V=V,+ L (4.61)
Q ( 1 1 )
V=—"-—|——— .
dte \1ny 1y (4-62)
Q (12— 7’1)
V=— .
4me ( Ty (4.63)
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As
r,—1; =dcosf

Therefore

i ( d cos 0) (4.64)

4me Ty

As separation between the positive charge particle and the negative charge particle of
the electric dipole is very small and the point under observation is located far away
from the dipole, so

T, =T
Therefore potential at point P is given by

Qd cosf

Electric field intensity is calculated using the following relationship

E=-VV (4.66)
E = Qd (2cosfa, + sin6 agy) 4.67
= 2,3 (2COS a, +sinf ag (4.67)

Product of Q and d is known as dipole moment. It is a vector quantity that is
represented by P.

P=0d

Where d is the distance vector extending from the negative charge to the positive
charge. Consider two unit vectors a, and a, asshown in Figure 4-23.

a,.a, =cos6

Thus
P.a, =Qd.a, = Qda,.a,= Qdcos 6
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Figure 4-23: A unit Vector along z — axis and a Unit Vector along r

Putting this value in equation 4-65, we obtain

P.a,
V= —
A r

v P.r
" 4mer3

(4.68)

(4.69)

Electric dipole in Figure 4-24 is located away from the origin. Position vector of the
center of the dipole is 7. Position vector of point P is r. Distance vector extending
from center of the dipole to the point under observation is r — 1.

Electric Dipole
Q

Figure 4-24: Electric Dipole
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The potential at point P is given by

P.(r—ry)
= — - 4.7
4 dre |r —rq3 (4.70)

Example: 4-7

An electric dipole having P = 8 a, nC — m is located at the origin. Find the absolute
potential at B(0, 6, 8).

Solution
P (r—rq)
Attey |r — 1|3
r—ry=6a,+ 8a,
|r —ryl =10m
_ 72a,. (6ay, + 8a,)
1000
V=576 mV
Example: 4-8

Two point charges of 2nC and —2n(C are located at ( 2mm, 0, 0) and (—2mm, 0, 0)
respectively. Find the absolute potential and intensity at P(2,45°, 459).

Solution

Potential at point P is given by

Qdcosf
4mtey 12

8x10712x9x10°
4
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As

V= 12.73mV

0d

dmeg 13

(2cosfa, + sinf ay)

E=9x%x10"3(2 X cos45a, + sin45ay)

E =1272a, + 6.36ay v/m
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Chapter 5
Magnetic Flux and Magnetic Field Intensity

5-1 Magnetic Flux

Consider an isolated fixed North Pole that can not move from one place to another
place as shown in Figure 5-1. There will be magnetic field in the vicinity of this isolated
North Pole. If we place a movable isolated north pole in the magnetic field of fixed
North Pole it will move along a straight line due the force of repulsion. The path or line
followed by an isolated north pole in a magnetic field is known as magnetic flux. It is a
scalar quantity and is represented by @. The unit of flux is Weber.

Fixed Morth Pole
Movable Morth Pole

Magnetic Flux

Figure 5-1: Magnetic Flux

We may change the place of the movable isolated North Pole around the fixed one and
can trace many more lines. In other words the number of magnetic lines of forces set
up in a magnetic circuit is called Magnetic Flux. It is analogous to electric current in an
electric circuit. The direction of the arrow gives the direction of the magnetic force,
magnetic field intensity and magnetic flux density.

5-2 Magnetic Flux Density

Consider lines of magnetic force @ passing through a surface S as shown in Figure 5-2.
All the lines are normal to the surface. The magnetic flux per unit area defines magnetic
flux density and it is represented by B. It is a vector quantity and its unit is weber /m?
or Tesla T. Mathematically

So
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Also

B = Ba,
S =Sa,
@=B.S

There is another way to compute magnetic flux density. We consider differential
magnetic flux d@ passing through a small portion of the given surface thatis ds.
According to the definition, the magnetic flux per unit area can be calculated as

B_dﬂ
T ds

Hence the differential magnetic flux passing through the differential area can be
computed as under

d@ = Bds

A )z

Figure 5-2: Magnetic Flux Density

As

132



ds = dsa,

d?@ = B.ds

g = fB. ds
The flux passing through the closed surface is given by

g = fB. ds
A source is located inside a sphere as shown in Figure 5-3. As the magnetic flux is
continuous, therefore the number of magnetic lines of force entering the closed
surface is equal to the number of magnetic lines of force leaving the closed surface.

Hence the net magnetic flux in the outward direction from a closed surface is equal to
zero.

Figure 5-3: Bar Magnet in a Sphere
Mathematically

ﬂsz.ds=0

The Divergence Theorem states that

ng.ds=f(V.B) dv
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V.B=0 (5.1)

This equation is known as Maxwell’s 2" equation.
Magnetic Flux density is related to magnetic field intensity with the help of following
equation.

B=uH
The unit of magnetic field intensity is ampere per meter. It is a vector quantity as well.
Example 5-1:

If B=2e ?a, T ,then find the flux passing through the following surface in a,
direction.

x =5m, 0<y<?2 0<z<4
Solution:
ds = dydza,

B.ds = 2e7?dzdy

4 2
ﬂ=fB.ds=2fe‘ZdZJ.dy
0 0

@ =2[-e?]§ x[y]3 =3.93wb

5-3 Biort -Savart Law

Current in a conductor generates magnetic flux density. Consider a current carrying

conductor as shown in Figure 5-4. The magnetic flux density is directly proportional to

the current in the conductor, length of the conductor, sine of the angle between the

length of the conductor and distance R and is inversely proportional to the square of

the distance between the conductor and point under observation.
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ILsin @

B x 72

|

Figure 5-4: Magnetic Field Produced by a Current Carrying Conductor

The differential magnetic flux density that is generated by the current in a small portion
of the conductor is given by

IdL sin 8

B « R2

Magnetic flux density is a vector quantity and its direction is given by
dé x ap

Where d¥ is the differential length vector of the conductor in the direction of current
and ag is a unit vector in the direction of R.

Id€ X ap

dB x 72

u Ide X ap

dB = ————— 5.2

4T  R? (5:2)
The total magnetic flux density at point P is given by

= 1 72 (5.3)
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Consider the current carrying conductor shown in Figure 5-5.

-

Origin

Figure 5-5: Magnetic Field Produced by a Current Carrying Conductor

As
R=r—-nr,
R=|r—-r,
Therefore
u (Ilde€x (r—ry)
B=— 5.4
471_]. |r—rq3 G4)
The total magnetic field Intensity at point P is given by
1 (Idex(r—r
_ _f ( 1) (5.5)
4 |r —rq]3

Example 5.2:
Find the magnetic field intensity at A(0,4,0), caused by the following source.
Id€ = 64 x 1073 Am at 0(0,0,0)

Solution:

136



o Id€ x (r—ry)
41 |r —rq]3

dB =
(r—-ry)=4a,
dB = 64x107"%a, x 4a,
dB=4x10"qa, T
5-4 Intensity due to Infinitely Long Current Carrying Conductor

Consider a current carrying conductor extending from —oo to oo along z — axis as
shown in Figure 5-6. We consider a point on the y-axis just for the sake of convenience.

—* 39

T:,ﬂ‘ﬂ.p

Figure 5-6: Magnetic Field Intensity due to Infinitely Long Current Carrying Conductor

The total magnetic field Intensity at point P is given by

B 1f1d{’><(r—r1)
 4m T E
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As r—ry= pa,—za,

And |r—ry| = p?+ 22 , d€ =dza,

Therefore electric field intensity at point P that is caused by the infinite line charge is
given by

1 ldza, X (pa, — za,)

= 4n (p% + z2)3/2 (5.6)
z
— = cot#
p
z = pcoth

dz = — p cosec? 0 d@

When z = —oo,then 8 = m and when z = oo,then 6 = 0, putting all these
values in equation 6, we obtain

1 j‘rlp cosec? 6 dfa, x (pa, — p cotf a,)
0

H = 5.7
41 (p?% + p?cot?0)3/2 G.7)
T
1 (1 p?cosec®6dbay
=— f (5.8)
4 ] p3(1+ cot? 0 )3/?
0
s
I [ cosec? 6 df ay
= (5.9)
4mtp ] (cosec? )3/2
0
" 4mp) cosecB (5.10)

0
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I

b4
HZEJ‘SiHQanQ
0

H=5—ay (5.11)

Example 5-3:

Find the magnetic field intensity at P(0, 4, 3) in rectangular coordinated system caused
by a current of 20 A along z — axis.

Solution:
I -4
~ 2mp 0 iﬂ
p = Sm =
_ 20m
~1on Y
H=2a, A/m i .,
4
@ = tan 1§ p
* P(0,4,3)
® =53.1 :I
— 00

Hy cos53.1 —sin53.1 0][0
Hy = |sin 53.1 cos53.1 012
H, 0 0 1llo
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H=-16a,+16a,A/m
5-5 Magnetic Field Intensity due to a Small Current Carrying Conductor

Consider a current carrying conductor extending from a to b alongz — axis as
shown in Figure 5-7. We consider a point on the y-axis just for the sake of convenience.

The total magnetic field Intensity at point P is given by

1 Jldt’ X(r—-ry) (5.12)

~ am

|r — 743

L S

Figure 5-7: Magnetic Field Intensity due to a Small Current Carrying Conductor

As r—ry= pa,—za,

And r—rq = p>+ 2% , df =dza,
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Therefore electric field intensity at point P that is caused by the small line charge is
given by

b
1 (ldza, X (pa, — za,)

= 1 07+ )" (5.13)
a
z
—= tané
z= ptan@

dz = psec?do

When z = a, then 8 = a; and when z = b,then 6 = a,, putting all these
values in equation 5.13, we obtain

az
I sec’fdfa, X (pa, —ptanb a
Hz_fp 2 X (pa, —p 2) 5.14)
4T (p? + p?tan? 9)3/2
ay
az
1 I p%sec? 6 dbay
=— f (5.15)
4 ) p3(1 + tan? @ )3/2
a
az
o I sec? 6 df ay iy
 4mp (sec? )3/2 (5.16)
a
az
_ I do ag 517
“4mp | secH (5:17)
a
az
H = ! f 6do
=2 cos ay
as
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I
H = yr— [sina, —sina; ] ay (5.18)
Example 5-4:
Find the magnetic field intensity at P(0, 6, 0) in rectangular coordinate system caused
by a current of 24w A along z — axis. The conductor extends fromz = —8 to z = 8.
Solution:
H — I [ . . ]
= p Sina, Sin aq a@
p=6m
8
a, = —tan‘lg = —53.1° -
g
8
a, = tan"t—= 53.1° L
6
24 _ )
= Sam [sin53.1 4+ sin53.1] ay
” a, ™ P(0,6,0)
- > Y
ﬂfl -
H=16a,
.
Using Right hand rule :I
bt
—a

H=-16a,A/m

5-6  Ampere’s Circuital Law
Consider an infinitely long current carrying conductor as shown in Figure 5-8. The
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magnetic field intensity at point P is given by

I
H = % (l@ (519)

Let us consider a closed circular path of radius p around the current carrying conductor.
The differential length vector of the closed circular path is given by

de = pdo a,

The scalar product of the two vectors

I
H.d¢ = —do
2T

8

0

Figure 5-8: Infinitely Long Current Carrying Conductor

The integral of the magnetic field intensity around the closed circular path is given by
21
I
ng. de = —f do
21
0
I
jg H.df = —X2m
21
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§ H.d¢ = Ienclosed (520)

We define Ampere’s Circuital law in light of the above equation. Ampere’s Circuital law
states that integral of magnetic field intensity around a closed imaginary path is equal
to the current enclosed by the closed path.

Example 5-5:

Find the current in an infinitely long conductor that generates a magnetic field intensity
of 2ay A/m along the circumference of a circle around the conductor. Radius of the
closed circular path is 5m.

Solution:
éH- d€ = Ienciosea
H = 2ay
dt¢ = pd a,
df = 5d¢ ay
H.d¢=10d9
2
ng. def = 10[ el1)
0
[=6284
Example 5-6:

Find the integral of the magnetic field intensity around the closed path from
A(2,0,0) to B(2,2,0) to €(4,2,0) to D(4,0,0) to A(2,0,0) if the magnetic field

intensity is 2a, + z a, A/m.

Solution:
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z =0, sodz=0

0<y <2

d¢ =dya,

3

Consider path [

3
H= 2ax+; a, A/m

Consider path k

x =2, so dx =0
=
3
A(2,0,0) 2 .
n E(2,2,0)
D(4,0,0) 1
x m  (4,2,0)

f H.d¢ =3A

k

y =2, so dy=0

z=0, so dz=10
2< x <4

df = dx a,
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H.df = 2dx

4
f H.dt’=2]dx
l
2

f H.df = 4A
l

Consider path m

Consider pathn
y=0, sody=0
z =0, so dz=0
2< x <4
df =dx a,

H.df = 2dx
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2

f H.dt’=2fdx
n

4

f H.df = —4A
n

3€H.d£’=f H.dt’+f H.dt’+f H.dt’+J H.d¢
k l m n

%H.dt’= 154

5-7 Magnetic Field Intensity due to a Coaxial Cable

Consider a coaxial cable which is extending from —ooto oo along z — axis as shown in
Figure 5-9. The radius of the inner conductor is a, the inner radius of the outer
conductor is b and the outer radius of the outer conductor is c. There is a dielectric
material in between the two conductors of the coaxial cable.

Z — axis

)

Bl
Vo

Figure 5-9: Coaxial Cable
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The current in the inner conductor of the coaxial cable is I which flows in the direction
of positive z-axis, while the same current flows in the opposite direction in the outer
conductor. We are going to find out the magnetic field intensity at different points with
the help of Ampere’s Circuital law. We shall consider a point inside the inner
conductor, a point in the dielectric material, a point in the outer conductor and finally a
point outside the coaxial cable.

The magnetic field intensity is in the direction of ag.
H = Haq,

The current density of the inner conductor is given by
Ji=—3 (5.21)

The current density of the outer conductor is given by

I

Jo
We consider a point inside the inner conductor as shown in Figure 5-10. The radial
distance of the point is p. We consider a closed circular path of radius p for the
application of Ampere’s law.

Figure 5-10: Top View of the inner Conductor

Some portion of the inner conductor is located inside the closed circular path. The
current enclosed by the closed circular path of radius p is given by

I

I 1 d=—>< 1T
enclose ) p

2
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I
Ienclosed = E X pZ (523)

The differential length vector of the closed circular path is given by
df = pdd ay

The scalar product of the two vectors
H.d¢ = Hpd®

The integral of the magnetic field intensity around the closed circular path is given by

2m
%H.dt’szj do
0

%H. df = Hp X 2m (5.24)

Putting the values in the following equation
f H.d¥ = lenciosea

d 2
Hp X 2w = ;x p

Ip
2ma’

Ip
H = a2 ay (5.25) p <a

Figure 5-11: Top View When the Point is inside the Dielectric Material
We consider a point inside the dielectric material of the coaxial cable as shown in

Figure 5-11. The radial distance of the point is p. We consider a closed circular path of

149



radius p for the application of Ampere’s law.
The entire inner conductor is located inside the closed circular path. The current
enclosed by the closed circular path of radius p is given by

Ienciosea =1 (5.26)

The differential length vector of the closed circular path is given by
df = pdd ay

The scalar product of the two vectors
H.d¢ = Hpd®

The integral of the magnetic field intensity around the closed circular path is given by

2m
%H.dt’szj do
0

ng. df = Hp X 21 (5.27)

Putting the values in the following equation

f H.d? = l,ci05eq

Hp X2m = 1
H= —
2mp
I
H = %a@ (528)a<p<b

Let us consider a point inside the outer conductor of the coaxial cable. We consider a
closed circular path of p for the application of Ampere’s Circuital Law as shown in
Figure 5-12. The entire inner conductor and a portion of the outer conductor are
located inside the closed circular path.

150



Figure 5-12. Top View When the Point is inside the Outer Conductor

So the current enclosed by the closed path will be equal to the current in the inner
conductor plus the current in the shadded region of outer conductor. Both the currents
are in opposite directions.

Lenciosea = I — Ishaa (5.29)

The current in the shadded region of outer conductor is given by

Ishaa = (2 =b?) x m(p* — b?) (5.30)
[ 2 2
Ienclosed:I_(Csz)X (p* —b%)
(c*— p*)
Ienciosea = I(C‘sz) (5.31)

As
ng. df = Hp2m
Putting the values in the following equation
ng Al = lopciosea

( p?)

Hp2m = ( )
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gt (c? — p?)
~ 2mp (c?2 —b?)

I (¢?=p?)
“2mp(c2—b2) P

(5.32)

whenb < p<c

Let us consider a point outside the coaxial cable. We consider a closed circular path of
p for the application of Ampere’s Circuital Law as shown in Figure 5-13. The entire
coaxial cable is located inside the closed circular path.

o]

Figure 5-13. Top View When the Point is outside the Cable

So the current enclosed by the closed path will be equal to the current in the inner
conductor plus the current in the outer conductor. Both the currents are in opposite
directions.

Ienciosea =1—1=0 (5'33)
As

Putting the values in the following equation

%‘ H.d? =1,nc105cq

ng.dl’zo
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Example 5-8:

Find the magnetic field intensity at A(0,3mm,0) and B(0,5mm,0) caused by an
infinite coaxial cable. The inner conductor of the cable carries a current of 4 mA in the
a, direction. The radii of the conductors are;

a=2mmb =4mmand c = 6mm

Solution:

I

21p

ay

H = i ag
61T

H= 0212a3; A/m
Applying right hand rule, we obtain

H= -0212a, A/m
(b)

P (c? — p?)
- 2mp (cz—bz)am

4 (36-25)
“10r(36-16)"

H = 70a,
H=-70a, A/m
5-8 Magnetic Field Intensity due to an Infinite Sheet of Current

An infinite current carrying sheet which is located in z = 0 plane is shown in Figure 5-
14. The current in the sheet flows in the direction of y — axis. The current per unit
width of the sheet is known as surface current density that is represented by K.

153



e + d
f | N

Figure 5-14: Infinite Sheet of Current

I
K = 5 a,
We assume that this infinite sheet consists of a large number of infinite current
carrying conductors in which the currents flow in the direction of y-axis. Consider two
conductors which are located at equal distance from z-axis as shown in Figure 14.
Consider a point on the z-axis above the sheet. The magnetic field intensity caused by
conductor 1 is H; and the magnetic field intensity caused by conductor 2 is H,. The
vector sum of these two fields results in the total magnetic field intensity that is in the
direction of x-axis.

H:H1+H2:Hax

Similarly the magnetic field intensity at a point on the z — axis below the sheet is
given by

H=—-Ha,

For the application of Ampere’s circuital law, we consider a closed rectangular path a-c-
d-e-a as shown in Figure 5-15. The mathematical model of this law is

§ H.d? =1,nc105cq
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Figure 15: Magnetic Field Intensity above the sheet

Let us evaluate its left hand side,

ng.dt’ =Hw+H.w
ng. d¢ = (Ha, .wa,) + (—Ha, .—wa,)

jEH. d¢ = 2Hw (5.34)

Let us consider another closed rectangular path f — g — h — i — f as shown in Figure
5-14. The mathematical model of Ampere Circuital law is

f H.d? =1,nc105eq

Let us evaluate its left hand side,

ng.di’ =Hw+Hw
fH. d¢ = (Ha, .wa,) + (—Ha, .—wa,)

ng. de = 2Hw (5.35)
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The current enclosed by anyone these two closed paths is given by

Lenciosea = Kw

Therefore

2ZHw =Kw
H = 11(
2
1
H = EKax (5.36)
This last equation can be written as
1
H = EKa" X a, (5.37)
Or
1
H = E K % a,

The same equation in generic form can be written as

1
H=>Kxay (5.38)

Where a,, is a unit vector normal to the sheet.
Example 5.9:

Find the magnetic field intensity at C(4,2,0), caused by an infinite sheet of current,
located inthe x = 0 plane. The surface current density of the sheet is 8a, A/m.

Solution:
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8
H=§azxax

H = 4a, A/m
5-9 Maxwell’s 3rd Equation

Consider a current carrying conductor as shown in Figure 5-16. The current per unit
area is known as current density. That is

|

Figure 5-16: Current Carrying Conductor

—

Where S is the crossectional area of the conductor. As the current in the conductor
flows in a, direction, therefore

] =]a,

Consider the crossectional area of the conductor as a vector quantity in the direction of
current

S =Sa,

The current in the conductor is given by
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I1=].5
Let us assume that the current in the small portion of the crossectional area is dI. Then

dl
]_ds

The small portion of the crossectional area in the direction of current is given by
dS = dSa,

Therefore
dl =].ds

So, the current in the conductor can be calculated as

I= j]. ds (5.39)

We apply Ampere’s circuital law around the closed circular path, the mathematical
model of Ampere Circuital law is

f H.d? =1,,c105eq

Therefore

3§H. de = f J.ds (5.40)

We apply Stokes theorem on the left hand side

ng.dfzf(VxH).ds

f(VxH).ds=f].ds

(VxH) =] (5.41)

This equation is known as Maxwell’s 3™ equation. The curl of H in rectangular
coordinate system is calculated as
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ax
9

ax

H,

VXH=

ay

9
ay
Hy

a,
0
oz
H,

The curl of H in cylindrical coordinate system is calculated as

VXH=

|-
QD
“cm"blm“ca

pag

9
oJ0]

pHy

a,
0
0z
H,

The curl of H in spherical coordinate system is calculated as

a,

VxH 1 0
X = R
r2sinf | or
H,

Example 5.8:
FindVx H if H = 2e%?a,, A/m

Solution:

VXH=|+

VXH=| —

rag
d
a0

THQ

rsinfag
0

a0
rsinfHy

VX H=4e*”a, A/m?
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Chapter 6
Force and Torque

6-1 Force on a Current Carrying Conductor

When a current carrying conductor is placed in magnetic field, it experiences a force.
Force is a vector quantity having magnitude as well as direction. Vector quantities are
represented by bold letters. Consider a current carrying conductor which is located in
magnetic field as shown in Figure 6-1. This conductor will experience a force which is
directly proportional to strength of the magnetic field, length of conductor, current in
the conductor and sine of the angle between length and magnetic field.

F = ILBsin 6 (6.1)

The above equation means that if current in the conductor is parallel to the magnetic
flux density, then no force will be exerted on the conductor. So, proper orientation of
the magnetic field plays an important role. As force is a vector quantity, in order to find
out the direction of this force, length of the conductor is considered as a vector
guantity in the direction of the current.

'y £
B
L o
|
Y —

Figure 6-1: Current Carrying Conductor in a Magnetic Field

The direction of the cross product L X B is the direction of the force on the current
carrying conductor. So the direction as well as magnitude of this force can be found
with the following equation.
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F=ILXB (6.2)
Another way to find this force is to consider a very small portion of the current carrying
conductor, represented by d€ as shown in Figure 6-2.

A -
B
L 6
di
IT
Y =

Figure 6-2: Differential Current Element in a Magnetic Field

d¥ is a vector quantity and this differential vector is always in direction of the current.
The differential force on the differential portion of the current carrying conductor is
calculated with the help of equation 6.3.

dF =1d¢ x B (6.3)

If we want to compute the total force on the current carrying conductor, we need to
integrate both sides of equation 6.3.

F=[ld¢xB (6.4)
Example 6.1:

A differential current element having length of 2 X 10™* m carries a current of 84 in
the a, direction. How much force is experienced by the conductor if it is placed in a
magnetic field of 2 x 10~%a,, T.

Solution:
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dF = 1d¢ x B
dF = 16 x 10™*a, X 2 X 10 %a,

dF = —32a, nN

6-2 Force on a Moving Charge

A current carrying conductor is placed in a magnetic field as shown in Figure 6-3. The
force which is experienced by this conductor is given by

F=[IldexB (6.5)

Current in this conductor is due to motion of free charge as the rate of motion of
charge defines current. The total free charge which is in motion in the above
mentioned conductor is Q coulomb.

dqQ
=%
'y -
B
L B
dL
|
Y Q L]

Figure 6-3: Current Carrying Conductor in a Magnetic Field

Multiplying both sides of the above equation by d¥€, we obtain the following equation
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dt
Id€ = dQ I

We assume that the free charge inside the conductor travels distance d¥€ in time dt,
de . . .
then o represents velocity of the free charge inside the conductor. Velocity of the

free charge is represented by V. So
Id¢ =dQV

In light of the above equation, the force on the current carrying conductor can be
found as

F=[dQ (VxB) (6.6)

Let us assume that the free charge moves with a uniform velocity Vin a uniform

[ae=0

So force on the charge that moves in a magnetic field B is given by

magnetic field B, then

F=Q (VxB) (6.7)
Now, let us assume that charge Q moves in a magnetic as well as electric field as shown

in Figure 6-4.

N B

1/

Q —»E

Figure 6-4: Moving Charge in a Magnetic as well as Electric Field

There are two sources that exert force on the moving charge, electric and magnetic
field. In order to find the total force on the moving charge we apply Superposition
theorem. The Force on the moving charge in the absence of electric field is given by
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Fi=0(W xB) (6.8)
Force on the moving charge in the absence of magnetic field is given by
F, = QE (6.9)
Vector sum of these two forces results in the total force on the moving charge
F=F{+F,
F=Q[(VXxB)+E] (6.10)
This last equation is known as Lorentz Force Equation.

Example 6-2:

A charge of 2 X 1073 C is moving with a uniform velocity of 3a, m/sec in a magnetic
flux density of (Zax - 3ay) T, Find the magnetic force experienced by the charge. (b)

If we consider an electric field intensity of (—Zax+2ay) v/m, then find the
magnitude of the total force on the charge.

Solution:
F,=Q(VxB)
F, =6x107%a, x (2a, — 3a,)

F,, = (18a, + 12a,) mN
(b)
We find the electric force on the charge in the absence of magnetic field.

Fr=QE

Fp = (—4a, + 4a,) mN

According to Superposition Theorem
Fr= F,, +Fg
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Fr = (12a, + 16a,) mN
Fy=20mN

6-3 Force between two Current Carrying Conductors

Two current carrying conductors are placed in the magnetic fields of each other as
shown as in Figure 6-5. The current I; in the first conductor will produce a magnetic
field By in accordance with Biot-Savart Law and it will exert a force F, on the second
current carrying conductor. Similarly the current I, in the second conductor will
produce a magnetic field B, in accordance with Biot-Savart Law and it will exert a force
F4 on the first current carrying conductor. The ongoing discussion implies that when
two current carrying conductors are placed close to each other then there is either a
force of attraction or a force of repulsion between them. The nature of the force
depends upon the directions of the two currents which will be explored in the

upcoming discussion.

diq [ diz [

]

T —

Figure 6-5: Two Current Carrying Conductors

Force experienced by the differential portion of the first conductor due to the magnetic
field of the differential portion of second conductor is computed using the following

equation.
d (dFl) S Ildt)l X de

Where
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Ldf, X (r{—r
dezi 20t (13 2)
im |ry — 15|

Total force experienced by the first conductor due to the magnetic field of the second
conductor is computed using the following equation.

F1 = flld‘gl X BZ (611)

Where
_ i Izd‘gz X (T1 - rz)
4 lry — 1213

B,

Where d¥; is the differential length vector of the first current carrying conductor in
direction of the current I,. Experimentally the force of repulsion between two current
carrying conductors is found with an apparatus known as Current Balance.
Force experienced by the differential portion of the second conductor due to the
magnetic field of the differential portion of first conductor is computed using the
following equation.

d (dFy) = I,d¢, X dB4

Where

Ldl{ X (ry—r
dBlzi 1d€y X (1 1)
4 lry — 143

Total force experienced by the second conductor due to the magnetic field of the first
conductor is computed using the following equation.

FZ = flzdfz X Bl (612)

Where
_ i Ild'Bl X (1‘2 - 1‘1)
U7 4m lry — 143

Where d¥, is the differential length vector of the second current carrying conductor in
direction of the current I,. This fact should be kept in mind that bold letters in these
equations denote vector quantities. This is law of nature that things tend to move from
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a place of higher potential to a place of lower potential. If we apply right hand rule on
the two current carrying conductors of Figure 6-6, the magnetic flux cancel the effect of

each other in the space between these two conductors.

1

"
f-—]

Higher Magnetic Lower Magnetic
Field Region Field Region

2

s
f=—r1

diy [

3

Higher Magnetic
Field Region

Figure 6-6: Force of Attraction between two Current Carrying Conductors

Obviously these two conductors will tend to move from a place of higher magnetic field
to a place of lower magnetic field and there will be a force of attraction between them.
So it is concluded that if the currents in these conductors are in same direction, then

there will be a force of attraction between the conductors.

1

s
f-—o1

Lower Magnetic
Field Region

Higher Magnetic
Field Region

diy [

3

J—

2

e
f-—1

Lower Magnetic
Field Region

—

Figure 6-7: Force of Repulsion between two Current Carrying Conductors
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If we apply right hand rule on the two current carrying conductors of Figure 6-7, the
magnetic flux reinforce the effect of each other in the space between these two
conductors. Obviously these two conductors will tend to move from a place of higher
magnetic field to a place of lower magnetic field and there will be a force of repulsion
between them. So it is concluded that if the currents in these conductors are in
opposite direction, then there will be a force of repulsion between the conductors.

Example 6-3:
Two differential current elements;
I,d¢, =8x10"%*a,Am and L,df, = —-8x10"%*a, Am

are located at (0,0, 0) and (0, 2, 0) respectively. Calculate d (dF.)and d (dF).

Solution:
d (dFl) = Ild'Pl X dBZ
Where
Ldf, X (r{—r
dB, = Ho [At, (rq 2)
41 |r1 —1'2|3
—-8x10 1 a, x (—-2a
dBZ = z ( y)

8

dB, = -2x10"a, T

d(dF;)=8x101"1a,x-2x10""a,

d (dF,) = -16x10%a, N

(b)
d (sz) = Izd'ez X dB1
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Where
ﬂ Ild‘gl X (rz - Tl)
4 lry — 143

dBl -

8 x 107" a, x (2a,)
8

dB1 =

dB, =-2x10"%a, T

d(dF,) = -8x10"*a,x -2 x 10" a,
d (dF,) = 16 x 1075 a, N

There is a force of repulsion between the two conductors.

Example 6-4:

Two differential current elements;

Lde; =2%x10"3a, Amand Ldf, =4x 1073 a, Am

are located at (2,2,0) and (3, 4, 0) respectively. Calculate d (dF4) and d (dF,).

Solution:

d (dFl) = Ild'Pl X dBZ

Where

Ldf, X (r{—r
dezﬂ 2d€; X (1rq 2)
4 lry — 123

dB, = 4x10a, x (—a, — 2a,)
(2.24)3
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dB, = 0356 x 107%a, x (—a, — 2a,)
dB, = (0.71a, — 0.356a,) x 1071 T
d (dF,) =2 %10 a, x (0.71a, — 0.356a,) x 1071

d (dF,) = (0.71a, — 1.42a,) x 107 N
(b)

Solution:
d (sz) = Izd'gz X dBl
Where
L,de; X (r,—r
dB, = Ho 1Aty (1, 1)
4 lry — 143
g _ 2% 107 a, x (a, + 2a,)
1= (2.24)3

dB; =0.178 x 107*%a, x (a, + 2a,)
dB, = (0.356a, + 0.178a,) x 1071 T

d (dFy) =4 %107 a, x (0.356a, + 0.178a,) x 1071°
d (dF;) = (-0.71a, + 1.42a,) x 10713 N
There is a force of attraction between the two conductors.

6-4 Force on a Current Carrying Loop

A rectangular current carrying loop is placed in a magnetic field as shown in Figure 6-8.
The loop carries current in the counter clockwise direction and is located in y =0
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plane. a, , @, and a, are the unit vectors along x, y and z — axis respectively. Force
will act on the current carrying loop and we need to find out the total force on the
loop. In order to find the total force acting on the current carrying loop, we find the
force on side ab, side bc, side cd and side da. Vector sum of forces on the four sides of
the loop results in the total force. For calculation of these forces, we recall the
following equation.

F=ILXB (6.13)
Force on side ab

F,, =ILXB (6.14)
Where L = —La, and B = Ba,
Therefore L X B = —La, X Ba, = —LBa,

Fu, = —ILBa, (6.15)

Force on side bc
F,. =ILXB (6.16)

Where L = —Wa, and B = Ba,

Figure 6-8: Current Carrying Loop
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Therefore LX B = —Wa, X Ba, =0

Fp. =—-IWa, XBa, =0 (6.17)
Force on side cd

F.,us=ILXB (6.18)
Where L = La, and B = Ba,
Therefore L X B = La, X Ba, = LBa,

F.q =ILBa, (6.19)
Force on side da

Fyo=ILXB (6.20)
Where L = Wa, and B = Ba,
Therefore LX B = Wa, X Ba, =0

Fgo=IWa, XBa, =0 (6.21)

Force on side ab is in the direction of negative y-axis, while force on side cd is in the
direction of positive y-axis as shown in Figure 6-9. In presence of these two forces the
current carrying loop will rotate in the clockwise direction around z-axis with a uniform
angular velocity and will be in state of equilibrium.

The total force on the loop will be equal to the vector sum of all the four forces. That is
F: Fab +Fbc+ ch+ Fda

F = —ILBa, + ILBa, = 0
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Raotation

ay

a |

ab

Figure 6-9: Rotation of Current Carrying Loop

Consider Figure 6-10 in which the width of the loop is visible. We want to find out the
total torque on the loop.

Torque on side ab

T,, = Moment arm X F,,

w
T, = fax x —ILBa,

1
Tap = —5wiLBa,

Torque on side bc
Ty = Moment arm X Fy,
Ty = Moment arm X 0

TbC=0
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Yy — axis

ab

cd

Fr.zb

Figure 6-10: Torque on the Loop
Torque on side cd

T.q = Momentarm X F_,

w
T.q= —Eax x ILBa,

1
Tea = —5wILBa,

Torque on side da
T4, = Moment arm X F,,
T4, = Moment arm X 0
Tga =0
The total torque on the loop is given by
T=Tu+Tpc+Tea+Taa
T = —-BlLwa,

The total torque can also be found as
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T=mxB (6.23)

Where
m=1S
m = [Lwa,
Therefore
T = ILway, X Ba, = —BlLwa,
Example 6-5:

Consider a current carrying loop in a uniform magnetic field of 2 x 1073 a, T as shown

in Figure 6-11. Find total force and total torque on the loop if it carries a current of 4 A.

Solution:
Consider Ly L, (0,2,0)
(0,0,0) . >y
F1 = IL1 X B
L, y 4Ly
F, =16a, x2x107° a, (4,0,0) N (4,2,0)
LZ
F, =32a, mN
— -3
| B=2x107%aq,T
Consider L, x

Figure 6-11 for Example 6-5

FZZILZ XB
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F,=8a, x2x1073a,

FZ - 0 mN
Consider L
F3 =IL3 XB
F; = -16a, x2x107% a,
F3 = —-32a, mN
Consider L,
F4 =IL4XB
F,=-8a, x2x1073a,
Fy, =0 mN
FT:F1+F2+F3+F4_
Fr=0N
(b)
T=ISXB

T=4x8a, x2x107° a,

T =64a, mN —m
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Example 6-6:

Consider a current carrying loop in the magnetic field of an infinitely long current
carrying conductor as shown in Figure 6-12. Find total force on the loop if it carries a

current of 1 A.

Solution:

(0,2,4) Ly (0,44)

]

Figure 6-12: Loop in the magnetic field of current carrying conductor

Consider H at point B
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= — ” a,
Consider L,
x =0, so dx =
y=2, so dy=
0<z<4
df =dza,
F,=1[/d¢xB
0
F1=~fdzazx —12;6ax
4
F,=-05%x10"°x [z]? a,
F;=2x10"%a, N
Consider L,

x =0, so dx =
z=0, so dz =
2<y<4
dt = dya,

F,=1[d¢xB
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1076

4
Fzzfdyayx— Ay
2

F, =10"° X [Iny]% a,
F, =10 x Inz a,

F,=069x107% a, N

Consider Lj

df =dza,

F;=1[dexB

1076
4

4
ngfdzazx— a,
0

F; = -025x107% x [z]§ a,

F3=-1x10"a, N

Consider L,

x =0, so dx =
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2<y<4
d¢ = dya,
F,=1[d¢xB
2
106
F4=fdyay><— a,
4

Fy,=10"°x [Iny]2a,

2
Fy=10"° x In7 a,

F,=-069%x10"° a, N
FT = F1+F2+F3+F4_

Fr=1x10"%a, N
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Chapter 7
Maxwell’s Equations

7-1 Maxwell’s 4% Equation

A conductor is placed in a time varying magnetic field as shown in Figure 7-1. The
variation in the strength of the magnetic field will induce some voltage across the
conductor in accordance with Faraday’s Law.

Conductor .

Prrrrrrerrens

@(t)

Figure 7-1: Conductor in a time varying magnetic flux

Voltage induced across the conductor in accordance with Faraday’s law is given by

_do
VST a
The magnetic flux is given by
Q= fB. ds
Therefore
= 0B d 7.1
v= Fr s (7.1)

This voltage may be found in terms of electric field intensity

v = ng. de (7.2)
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Applying Stoke’s theorem

v=fV><E.ds (7.3)
Therefore
VXE= 0B 7.4

This equation is known as Maxwell’s 4" equation.

Consider a conductor of length d that slides on the rail in the direction of y-axis in a
constant magnetic field as shown in Figure 7-2.

«—)V—»

<

|

x — axis

—» y—axis

— Velocity V

* IR J——Y

Figure 7-2: A sliding conductor in a constant magnetic field

The magnetic flux density is along z — axis. Voltage induced across the sliding
conductor in accordance with Faraday’s law is given by

ao
dt

v =
The flux linking the area is

@ = Byd
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Therefore

U=—BEd

Where % represents the velocity of the sliding conductor. So the voltmeter reads
v=—-BVd
Example 7.1:

The time varying magnetic flux in the vicinity of a conductor is @ =
5cos 100t m wb. Find voltage induced in the conductor at t = 1 m sec.

Solution:
po_22
dt
v =5x%100r X 1073 sin 1007t
v =157sin100mt V
v = 1.57sin(100m X 1073)
v=_8.22mV
Example 7-2:

If E = 8sin(6283t + 6z) a, V/m. Find

0B

ot
Solution:

VXE= B
ot
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B |0 a 0

9t |ox dy o0z

E, E, E,
a, a, a,

0B _ d d
9t dx dy 0z
8sin(6283t 4+ 6z) 0 0

0B

—5 = 48 cos(6283t + 62) a,

Example 7-3:

The sliding conductor in Figure 7-2 is moving with 16 m/sec in magnetic flux density of
4m T. Find the reading of the voltmeter if length of the sliding conductor is 0.2m.

Solution:
v=—-BVd
v=—4xX10"3x16x% 0.2

v=-128mV

7-2  Equation of Continuity

Consider free charge of Q coulomb in a conductor as shown in Figure 7-3. We remove
free electrons from the conductor in the outward direction. The free charge inside the
conductor will decrease with respect to time.
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I . free electron

A |
-TIL :-Ccrnductcrr‘- : -.—»
b

-

Figure 7-3: A conductor having free charge of Q coulomb

According to the law of conservation of charge, the rate of decrease of charge in the
conductor will be equal to the current in the outward direction. Mathematically

aqQ
loue = _E (7.5)
The free charge inside the conductor is
Q= f py dv

Differentiating both sides with respect to time, we obtain

d—Q = 9py dv
dt at
Therefore
Iout = at v dv (76)

The current in the outward direction from the conductor is given by
Loyt = f] ds

Applying Divergence theorem on the left hand side
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Ioyt = f(V-] )dv

Therefore

~dp,

f(v.])dv= af
~dp,

V="

This equation is known as equation of continuity.
7-3  Maxwell’s 3" Equation

The Maxwell’s 3™ equation is as under

(VXH)=]

dv

(7.7)

(7.8)

(7.9)

Consider a current carrying conductor extending from —oo to oo as shown in Figure 7-4.

oo

Figure 7-4: Current Carrying Conductor

The magnetic field intensity generated by the current in this conductor is given by
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I
H = % aw (7 10)

The curl of H in cylindrical coordinate system is calculated as

a, pa; a,
1| 0 0 0

VXH = ; % % 97
H, pHy H,

a, pa; a,
o a9 0
VxH=|0p 00 0z

0 L 0
21p
A=V><H=—;az (7.11)
21p?

The divergence of A is given by
VA= (pAy) + 252 + Z2 =0 (7.12)
V(VXH)=0 (7.13)

Therefore

V=0 (7.14)

But the equation of continuity says that

—0py
ot

V.J= (7.15)

This means that the Maxwell’s 3™ equation is incorrect. Recall the Maxwell’s first
equation

V.D =p,
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VJ=—-—(V.D)

V.<]+ aa—lt))= (7.16)

We compare equation 7.13 with equation 7.16

V.(Vx H) = v.(1+ aa_zt))

oD
(VX H) = (]+ E) (7.17)
This is the correct version of Maxwell’s 3" equation, where

Frin Displacement Current Density

Example 7-4:

If H= 4sin(6283t + 2z) a, A/m. Find amplitude of the displacement current
density if the conductivity is zero.

Solution:
@xH = (J+ 2—?)
(WxH) = (oE+ %—?)
As
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c=20

oD
VxH) = —
(Vx H) r
a, a,
oD 0 0
at 0x dy
4sin(6283t+2z) 0
oD
i 8 cos(6283t + 22) a,,

A/m?

7-4 Maxwell’s Equations in Instantaneous Form

The first equation of Maxwell is given by
V.D =p,
The second equation of Maxwell is given by
V.B=0

The third equation of Maxwell is given by

VXH=]+ oD
=t 5
The 4th equation of Maxwell is given by
VXE = B
- ot

7-5 Maxwell’s Equations in Integral Form

Consider the Gauss’s Law

ng.ds=fpv dv
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This is the integral form of the first equation of Maxwell. If we apply divergence
theorem on the left hand side of this equation, then we obtain the first equation of
Maxwell.

We know that the net magnetic flux passing through a closed surface is zero.
%B. ds=0 (7.19)

This is the integral form of the second equation of Maxwell. If we apply divergence
theorem on the left hand side of this equation, then we obtain the second equation of
Maxwell.

The third equation of Maxell’'s was derived in light of Ampere’s circuital law which
states that the integral of magnetic field intensity around a closed path is equal to the
current enclosed by the closed path.

ng.dt’=f].ds+J-aa—?.ds (7.20)

This is the integral form of the third equation of Maxwell. If we apply Stoke’s theorem
on the left hand side of this equation, then we obtain the third equation of Maxwell.
The fourth equation of Maxell’s was derived in light of Faraday’s law which states that
the if a conductor is placed in time varying magnetic flux, voltage is induced across the
conductor.

ngdi’—f aBd 7.21
.df = (’)t's (7.21)

This is the integral form of the fourth equation of Maxwell. If we apply Stoke’s theorem
on the left hand side of this equation, then we obtain fourth equation of Maxwell.

7-6  Maxwell’s Equations in Phasor Form

Let us consider table 1 which shows the corresponding phasor values of different
electrical quantities.
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Table 7-1: Phasor Values

Instantaneous Value Phasor Value
E E
D D
H H
B B
J J

In order to convert instantaneous form of Maxwell’s equations to phasor form, we

need to replace the instantaneous values of the electrical quantities given in Table 1 by

the phasor values and the % by jw.

The first equation of Maxwell is given by
V.D =p,
The same equation in phasor form is given by
V.D = Pv
The second equation of Maxwell is given by
V.B=0

The same equation in phasor form is given by

The third equation of Maxwell is given by

VxH=]+ oD
=J ot

The same equation in phasor form is given by
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The 4th equation of Maxwell is given by

VxE JB
XE=——
at
The same equation in phasor form is given by
Vx E=—jwB (7.25)
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Chapter 8
Electromagnetic Waves

8-1 Propagation of TEM wave in Lossy Dielectric Medium

Transverse electromagnetic waves are also known as uniform plane wave. In transverse
electromagnetic wave, the electric field intensity, magnetic field intensity and velocity
are normal to one another as shown in Figure 8-1. Lossy medium is a practical medium
and the attenuation of the signal takes place in this medium. The conductivity ( ¢ ) of
the medium is not zero.

H (y— axis)
F

E (x—axis)

» (z — axis )

Velocity of the Wave
Figure 8-1: TEM Wave Propagating in z Direction

In order to find out the electric field intensity of the TEM wave, we consider the
following Maxwell’s equation in phasor form

Vx E=—jwB (8.1)
Vx E =—jwuH (8.2)
Vx(Vx E)=—jou(VxH) (8.3)

We recall another equation of Maxwell’s

—_ [N —_

VXxH=] +jwD (8.4)
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Therefore

Vx (VX E)=—jou(J] +jwD) (8.5)
VX(VX E)=—ja)/,t(j +jw£f) (8.6)
VX(VX E)=—ja)u(af +ja)sf) (8.7)
V x (VX E)=—jwuaf+w2usf (8.8)

It can be shown that

Vx (Vx E) = —V2E

Where
vop OE . 9%E . 9%E
~ 0x?  0y?  0z2
—V2E = —jwucE+w? ue E (8.9)
VZE + w2 ue E— jopudE=0 (8.10)
— g —
2 2 _ 9 \%_
VE +w?pe (1 ]wg)E_o (8.11)
Let

VZE + w?uéE= 0 (8.12)

This is the wave equation in a lossy dielectric medium. As the TEM wave is travelling
along z — axis, the energy of the wave will decrease with respect to z and z represents
the distance travelled by the wave.

E=f()

Therefore
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V2E = 0°E
T 0272

0 +w?uéE=0 8.13

— +w*uéE = .

372 I (8.13)
This is 2"¢ order homogeneous differential equation. In order to find its solution, we
need to find its characteristic or auxiliary equation. Let

a—
az_m
m2E+w?uéE=0 (8.14)
m-° +w ,ueé= .
2 ZudE 0 8.15
(m? +w?pué) =0 (8.16)

This is the characteristic or auxiliary equation of the 2"¢ order homogeneous
differential equation. The roots of the auxiliary equation are complex

m = +jw/ué (8.17)
m=x9 =x(a+jB)

¥ is known as propagation constant, @ is known as attenuation constant and [ is
known as phase constant. The solution of the 2" order homogeneous differential
equation is

E=(Eye 7%+ E,e?)a, (8.18)

The first component on the right hand side represents the component of the wave
travelling along positive z —axis and the second component represents the
component of the wave travelling along negative z — axis. The first component is
known as forward travelling wave and the second component is known as backward
travelling wave. No component of the wave is travelling along negative z — axis, so
we do ignore this component. When the reflection of the wave takes place due to
change in the medium, then this component exists.

195



E=(Ee7%)a, (8.19)
E=(E e @ iPz) a, (8.20)

This is the phasor value of the electric field intensity of the uniform plane wave,
propagating in a lossy dielectric medium. Its instantaneous equation is given by

E = E, e % sin(wt — Bz)a,
8-2 Magnetic Field Intensity of TEM wave in Lossy Dielectric Medium

Consider the phasor value of the electric field intensity of the uniform plane wave,
propagating in a lossy dielectric medium

E=(Ee7"%)a, (8.21)

Lets us determine Magnetic Field Intensity of TEM waves in this medium with the help

of

VX E=—jowuH (8.22)
H= — (Vx E) (8.23)
—jw '

a, a, a,
— 1 d ad 0
H=— -~ = A
—jou |0x 0dy 0z
E. E, E,

a, a, a,

— 1 0 Ja 0

H =




H= Ese7?a
—jou " Y
— —jw+ ué 5
H = ] a 0 _yzay
—jo p
H= Eye7%a, (8.24)

Where

124 .
A= |— = jé
n /é ne

is the characteristic or intrinsic impedance of the lossy dielectric medium.

_

1 .
H=n (Eo e~ k7 ) a, (8.25)

_

1 —az—jBz—jo
H= ” (Eye ) a, (8.26)

This is the phasor value of the magnetic field intensity of the uniform plane wave,
propagating in a lossy dielectric medium. Its instantaneous equation is given by

E
H = 70 e~ sin(wt — fz — O)a,
The average power density of the wave is given by
1 — —
Save = 5 Real (E x H*)
Where H* is the conjugate of H

Example 8-1

197



E = 0.1 e % sin(wt — Bz)a, is travelling in a medium characterized by &, = 2.5,
6 = 2.5and u, = 2.5, if frequency of the wave is 1.8GHz, then find E, H, v and A.

Answer

w=2mx18x10%=1.13 x 10'° rad/sec

a+jp = jw\/ﬁ

a+jp = jw\[ue (1-7—)

2.5
= j1.13x10°/1.6 x4 x 10-7 x |(2.5%x8.85%x 10"12 —j———
j113 % 101°y1.6 X 47 X 10 \[( 5% 8.85 X 10712 — j ")

a+jB = 156.85+j179.55

E = 0.1e7156852 5in(1.813 X 101°t — 179.552)a, V/m

113 x 1010
V="17955

v =6.3% 10" m/sec

P
B
1= 2T
179.55
A =34.99mm
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. 1.6 x4mx 1077
T] =
(25 %885 x 10712 — j —22_)

1.13x1010

i =95.29,41.14 Q
H = 70 e~ sin(wt — fz — 0)a,

H = 0.001 e~156-85% 5in(1.813 x 1019 — 179.55z — 41.14°)ay
Question 8-2

E = 0.1 e7% sin(wt — Bz)a, is travelling in a medium characterized by &, = 2.5,6 =
2.5 and u, = 2.5, if frequency of the wave is 1.8KHz, then find E, H, and A.

8-3 Propagation of TEM wave in Lossless Dielectric Medium

Transverse electromagnetic waves are also known as uniform plane wave. As discussed
in the preceding sections the electric field intensity, magnetic field intensity and
velocity of transverse electromagnetic wave, are normal to one another as shown in
Figure 8-2. Lossless medium is an ideal medium and the attenuation of the signal does
not take place in this medium. The conductivity ( o ) of the medium is zero.

H (y— axis)
3

E (x—axis)

» (z —axis )
Velocity of the Wave

Figure 8-2: TEM Wave Propagating in z Direction

In order to find out the electric field intensity of the TEM wave, we consider the
following Maxwell’s equation in phasor form
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N

Vx E=—jwB (8.27)
Vx E=—jwuH (8.28)
Vx (VX E)=—jou(VxH) (8.29)

We recall another equation of Maxwell’s

_

VxH=] +jwD (8.30)
Therefore
Vx(Vx E)=—jwou(J +jwD) (8.31)
VX(VX E)z—jw,u(j +ja)sf) (8.32)
Vx (VX E)=—jwu(cE +jweE) (8.33)
As
c=0
Vx (Vx E)=—w? us E (8.34)

It can be shown that
Vx (Vx E)= —V2E
Where

—. 0’E 0%E O°E

V2E
d0x? + dy? + 0z?
—V2E = w? uc E (8.35)
V2E + w2 e E=0 (8.36)

This is the wave equation in a lossless dielectric medium. As the TEM wave is travelling
along z — axis, the energy of the wave will change with respect to z and z represents
the distance travelled by the wave.
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E=f()

Therefore
VZE = 0°E
"~ 9z2
’E  , -
ﬁi‘&) ueE=20 (8.37)

This is 2"! order homogeneous differential equation. In order to find its solution, we
need to find its characteristic or auxiliary equation. Let

a —

oz "
m2E+w?pueE=0 (8.38)
(m? +w?ue)E = 0 (8.39)
(m? +w?pe) =0 (8.40)

This is the characteristic or auxiliary equation of the 2" order homogeneous
differential equation. The roots of the auxiliary equation are imaginary

m = *jw\/ue (8.41)
As
m =% (a+jB)
So
a=20
And

ﬁzw\/ﬁ

The solution of the 2" order homogeneous differential equation is
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E=(E,e P2 + E e 1P7) a, (8.42)

Once again, the first component on the right hand side represents the component of
the wave travelling along positive z — axis and the second component represents the
component of the wave travelling along negative z — axis. The first component is
known as forward travelling wave and the second component is known as backward
travelling wave. No component of the wave is travelling along negative z — axis, so
we do ignore this component. When the reflection of the wave takes place due to
change in the medium, then this component exists.

E=(E e /#7)a, (8.43)

This is the phasor value of the electric field intensity of the uniform plane wave,
propagating in a lossless dielectric medium. Its instantaneous equation is given by

E = E, sin(wt — Bz)a,

8-4 Magnetic Field Intensity of TEM wave in Lossless Medium

Consider the phasor value of the electric field intensity of the uniform plane wave,
propagating in a lossless dielectric medium

E=(Eye ) a, (8.44)

Lets us determine Magnetic Field Intensity of TEM waves in this medium with the help

of

Vx E=—jwuH (8.45)

(Vx E) (8.46)
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~ 1 |a a o
H=—0ax 3y oz
E. E, E

a, a, a,

1 o 9 o

ﬁ = _.]’8 EO _]ﬁZ a

—jw

_ —jw\ e )

H = # E, e Bz g
—jw

_ 1 .

H= —E;e/f?q, (8.47)
u

Where
_ JE
1 €
is the characteristic or intrinsic impedance of the lossless dielectric medium.
— 1 ,
H= " (Eye /F?)a, (8.48)

This is the phasor value of the magnetic field intensity of the uniform plane wave,
propagating in a lossless dielectric medium. Its instantaneous equation is given by

E,
H = 70 sin(wt — fz)a,
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The average power density of the wave is given by

1 —
Save = EReal(E X H*)

8-5 The Angular Frequency of TEM wave in a Dielectric Medium

The magnitude of the electric field intensity in a lossless dielectric medium is given by
E = E, sin(wt — Bz) (8.49)

The intensity varies with time as well as distance. Let us study the variation in the
intensity with respect to time only.

Let
Bz=0
Therefore
E = E, sin(wt) (8.50)
The waveform for the intensity as a function of time is shown in Figure 8-3.

E

AP
\/ 27

\/4H \/6; )

Figure 8-3: Variation in Intensity with respect to time

At point P
wt =21

The time taken by one complete cycle of the wave is defined as time period. Therefore
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_27‘[
=7
w = 2nf

8-6 The Phase Constant of TEM wave in a Dielectric Medium

The magnitude of the electric field intensity in a lossless dielectric medium is given by
E = E, sin(wt — Bz) (8.51)

The intensity varies with time as well as distance. Let us study the variation in the
intensity with respect to distance only.

Let

Therefore
E = E, sin(Bz)

The waveform for the intensity as a function of distance is shown in Figure 8-4.

Figure 8-4: Variation in Intensity with respect to distance

At point P
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Bz =2m

The distance travelled by one complete cycle of the wave is defined as wavelength.
Therefore

pA =2m
_27‘[
'B_A

8-7 Speed of TEM wave in a Dielectric Medium

The magnitude of the electric field intensity in a lossless dielectric medium is given by
E = E, sin(wt — Bz) (8.52)

(wt — Bz) is known as the phase of the wave. It can be shown that the phase of the
wave is always constant. That is

wt — fz = Constant

Let us differentiate it with respect to time.

dz _0
w=p dt
dz w
a B
@ (8.53)
vV=— .
B
As
B = w\/ﬁ
Therefore
! (8.54)
V=— .
Jue
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This shows that the permeability and permittivity of the dielectric medium limits the
speed of electromagnetic wave.

And as

w = 2nf
And

'B = 2_7T

A
Therefore
v=fA (8.55)

Example 8-3

E = 377 sin(10°t — 5y)a, is travelling in a medium characterized by u = p, find
&, H,v Aand average power density.

Answer
w
V==
B
_ 10°
V=5

v =2x10% m/sec
1
v HolrEoér

3x10°
& = (3108

v =

& = 2.25

=g
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_27‘[

A=

A=1257m

K
1 &

B 47 x1077
1= |225%885x 10-12

n = 251.330Q

E
H = 70 sin(wt — fz)a,

H = 15 sin(10°t — 5y)a, A/m
Sav = 282.75a, w/m?

8-8 Propagation of TEM wave in Free Space

Consider a uniform electromagnetic wave as shown in Figure 8-5. Free Space is a
special lossless medium and the attenuation of the signal does not take place in this
medium as well. The conductivity ( o ) of the medium is zero. The permeability and the
permittivity of this medium are represented by y, and ¢ .

H (y— axis)
3

E (x—axis)

» (z — axis )
Velocity of the Wave

Figure 8-5: TEM Wave Propagating in Free Space
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In order to find out the electric field intensity of the TEM wave, we consider the
following Maxwell’s equation in phasor form

—_

Vx E=—jwB (8.56)
VX E=—jwuH (8.57)
Vx(Vx E)=—jwu, (VxH) (8.58)

We recall another equation of Maxwell’s

_ [N

VxH=] +jwD (8.59)
Therefore
Vx (Vx E)=—jwu, (] +jwD (8.60)
V x (V X E) = —jw Uy (j + jweg E) (8.61)
V x (V X E) = —jw U (O’E + jweg E) (8.62)
As
c=0
Vx (Vx E)=—w? e, E (8.63)
It can be shown that
Vx(Vx E)= —-V2E (8.64)

Where

—. 0’E 0%E O°E

2
V'E d0x? + dy? + d0z?
—V2E = w? uye, E (8.65)
V2E + w? uygeg E=0 (8.66)
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This is the wave equation in free space. As the TEM wave is travelling along z — axis,
the energy of the wave will change with respect to z and z represents the distance
travelled by the wave.

E=f(2)
Therefore
V2E = O’
T 9z2
’E _
372 +w Uy E=0 (8.67)

This is 2"! order homogeneous differential equation. In order to find its solution, we
need to find its characteristic or auxiliary equation. Let

d
="
m2E+ w? uy e E = 0 (8.68)
(m? +w?puye)E =0 (8.69)
(m? +w?puyg) =0 (8.70)

This is the characteristic or auxiliary equation of the 2" order homogeneous
differential equation. The roots of the auxiliary equation are imaginary

m = x jw./ly & (8.71)

As
m =+ (a+jpo)
So
a=0
And
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Bo = w4/ Ko &
The solution of the 2" order homogeneous differential equation is
E=(Eye Pz 4 E, e iboz) q, (8.72)

Once again, the first component on the right hand side represents the component of
the wave travelling along positive z — axis and the second component represents the
component of the wave travelling along negative z — axis. The first component is
known as forward travelling wave and the second component is known as backward
travelling wave. No component of the wave is travelling along negative z — axis, so
we do ignore this component. When the reflection of the wave takes place due to
change in the medium, then this component exists.

E=(Eye/hz)a, (8.73)

This is the phasor value of the electric field intensity of the uniform plane wave,
propagating in Free Space. Its instantaneous equation is given by

E = E, sin(wt — Byz)a,
8-9 Magnetic Field Intensity of TEM wave in Free Space

Consider the phasor value of the electric field intensity of the uniform plane wave,
propagating in a lossless dielectric medium

E=(E e /Poz)a, (8.74)

Lets us determine Magnetic Field Intensity of TEM waves in this medium with the help

of

VX E=—jwuH (8.75)

(VX E) (8.76)
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i 1 a 9 0
 —jwp, |0x dy oz
E, E, E
a, a, a,
— 1 0 ad 0
H = e 2= Ao
—Jw Ug 0x ay 0z
Eye /B2 0 0
ﬁ = _]'80 EO e_jﬁoz a
—Jw U
— —Jjw £ .
H = J : Ho OEOe‘]ﬁoza
—JW Uy
H= Eje/Foq, (8.77)
Mo
€o
Where
_ |Ho
Mo £

is the characteristic or intrinsic impedance of Free Space and is equal to 377Q.

— 1 ,
H= ~ (Ey e /Po?) a, (8.78)
0

This is the phasor value of the magnetic field intensity of the uniform plane wave,
propagating in Free Space. Its instantaneous equation is given by

E,
H= 77_0 sin(wt — By2)a,
0
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The average power density of the wave is given by

1 —
Save = EReal(E X H*)

The maximum value of the speed of the wave takes place in free space that is given by

C = =3x108 m/sec (8.79)

The maximum wavelength is in Free Space as well
C = fl (8.80)
Example 8-4:

E = 94.25 sin(wt + 6z)a, is travelling in a medium characterized by yu = i, and
e=¢gfindw,H,v Aand average power density.

Answer
‘= w
Bo
w = cfy

w=3x%x10% x6

w = 18 x 108 rad/sec

Bo
6
Ao = 1.047 m

_ |
No &
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B 47x10°7
Mo~ 1885 x 10-12

E
H=—- 77_0 sin(wt + fyz)a,
0

H = —0.25 sin(18 x 10 t + 62)a, A/m
S,y = —11.78a, w/m?
Example 8-5:

H= 2x1073 sin(2x10°t — Byy)a, is travelling in free space, find B, E,
A and average power density.

Answer
C= w
Bo
_ w
Bo =
_2x10°
07 3 %108
Bo = 6.66
1 = 2T
7 6.66
lo =0.942m

_ |H
No £
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B 47x10°7
Mo~ 1885 x 10-12

E = Hy n, sin(wt — Byy)a,
E = 0.754 sin(2 x 10° t — 6.662)a, A/m

Sav = 0.754a, mw/m?
8-10 Reflection of Uniform Plane Wave

When a uniform plane wave travels from one medium to another medium, a fraction of
the energy of the wave is reflected back to the same medium and the remaining energy
is transmitted to the second medium. The boundary between two media is defined as

Interface. We need to know the percentage of the energy that is lost due to reflection
phenomenon. The reflection loss can be found in terms of reflection coefficient. In
other words the reflection coefficient is a very important parameter that describes how
much of an electromagnetic wave is reflected due to impedance discontinuity. If the
medium is uniform then there will be no reflection at all. We shall consider three
different interfaces in the forthcoming sections.

8-11 Lossless Dielectric-Lossless Dielectric Interface

Consider the interface between two lossless dielectric media that is located at z = 0 as
shown in Figure 8-6. The permeability, permittivity, phase constant and intrinsic
impedance of medium no 1 are represented by u,, €1, 51 and n, respectively, while the
permeability, permittivity, phase constant and intrinsic impedance of medium no 2 are
represented by u,, €, B, and n, respectively. The incident wave travels in medium 1
along z — axis towards the interface. At the interface, a fraction of the amplitude of
the incident wave is reflected back and the remaining energy is transmitted to the
second medium.

Let us consider the waves in medium no 1.
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Medium 1 Medium 2
Hg: £1, f§; and 1y Hg: £2, i, and 77,

|
H e i

i 2

[ E. Incident wave E. Transmitted wave
i ]
5, Z 5,

L

» Z - axis
E,. (Normal)
s, P
Reflected wave l /
H interface
" atz=0
Figure 8-6: Reflection of the wave
Medium No 1:
Electric field intensity of the incident wave is given by
E;=(E,eh7)a, (8.81)
Magnetic field intensity of the incident wave is given by
H. = (E o-iB1z
H, (771 eIh17) a, (8.82)
Average power density of the incident wave is given by
1 — .
Si = EReal(Ei X H*l)
Electric field intensity of the reflected wave is given by
E.=(pEye/f17) a, (8.83)

Where p is known as reflection coefficient.

Magnetic field intensity of the reflected wave is given by

216



o em
H, = (—n—l" e/s? ) a, (8.84)

Average power density of the reflected wave is given by

1 — .
S, = EReal(Er X H*.)

There are two waves having the same frequency in medium no 1, the incident wave
and the reflected wave. Obviously the interference of these waves will take place,
hence the total intensity in medium no 1 will be equal to the phasor sum of the
incident and reflected wave.

Total electric field intensity in medium 1 is given by

Ei= (Eje Pz 4 pEyeifr?)a, (8.85)

Total magnetic field intensity in medium 1 is given by

H1 = Hi + HT
_ E , E, .
m M

Medium No 2:
Electric field intensity of the transmitted wave is given by

E,=(1Ey e /P27 a, (8.87)
Where 7 is known as transmission coefficient.

Magnetic field intensity of the transmitted wave is given by
H, = (o ,-jB2z
H, = ( 0 oIt ) a, (8.88)

Average power density of the transmitted wave is given by
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1 _ .
S, = EReal(Ez X H*3)

We apply the boundary condition, which states that whenever a wave travels from one
medium to another medium, its tangential component does not change however its

normal component changes. As El and EZ are entirely tangential to the interface,
therefore

(El= Ez) at z=20
1+p=r1 (8.89)
Similarly ﬁl and ﬁz are entirely tangential to the interface as well, therefore
H,=H,

(ﬁlzﬁz) at z=0

1 1 T

p
M m N2
Putting the value of 7, we obtain

1 1_1+ 1
M p771 Up) p772

The reflection coefficient is given by

N2—M

p= 8.90
M2+ ( )
The transmission coefficient is given by
2
r=_21 (8.91)
M2+Mm
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As the power is directly proportional to the square of the amplitude of electric field
intensity, therefore power of the incident wave is

P; = constant X E}
And power of the reflected wave is
P. = constant X p?E¢

Therefore ratio of the reflected power to the incident power is
— = p? (8.92)

Example 8 — 6:

E; = 377 sin(10 x 108t — 5z)a, is travelling from a medium characterized by
U = Uy and characterized by &, = 2.25 to free space. Find H; ,E,.,H,, E, and H,.

Solution

ny = 251.33Q, n, =377 Q

_ 10x10°
Ba = 3 x 108

B, = 3.333

377 — 251.33

P =377+ 25133
p=0.2

_ 377x2
' =377+ 25133

T=1.2

E; = 377 sin(10 x 108 t — 52)a,
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H; = 15 sin(10 x 10°t — 52)a,

S, = 282.75a,

E, = 377p sin(10 x 108t + 52)a,
E, = 754 sin(10 X 108t + 52)a,

H, = —15p sin(10 x 10° ¢ + 52)a,
H, = —03 sin(10 X 108 t + 52)a,

S, = —1131a,
E, = 3777 sin(10 x 108 t — 3.3332)a,
E, = 452.4 sin(10 X 108 t — 3.3332)a,

452.4

i x 108 t — 3.
H, 377 sin(10 x 10° t — 3.3332)a,

H, = 1.2 sin(10 x 108 ¢ — 3.3332)ay
S, = 271.44a,
8-12 Lossy Dielectric-Lossy Dielectric Interface

Consider the interface between two lossy dielectric media that is located at z = 0 as
shown in Figure 8-7. The permeability, permittivity, propagation constant and intrinsic
impedance of medium no 1 are represented by u,, &, 7;and 1j; respectively, while the
permeability, permittivity, propagation constant and intrinsic impedance of medium no

2 are represented by u,, &, ¥,and 1j, respectively.
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Medium 1 Medium 2
J"t‘[}lr Ej_r ?13nd ﬁ‘l P:’I}r E:r '}'r: E"-Id TJ‘:

A, 3,

L

E. [Incident wave E. Transmitted wave
: i : z
S 5,

L

» Z - axis
E (Normal)

54—/’ ’

"
Reflected wave l /

77 interface

r atz=10

Figure 8-7: Reflection of the wave

The incident wave travels in medium 1 along z — axis towards the interface. At the
interface, a fraction of the amplitude of the incident wave is reflected back and the
remaining energy is transmitted to the second medium.

Let us consider the waves in medium no 1.
Medium No 1:
Electric field intensity of the incident wave is given by
E;=(E e "?)a, (8.93)

Magnetic field intensity of the incident wave is given by

H, = (f’—j e?) a, (8.94)

Average power density of the incident wave is given by
1 — —
SiZEReal(Ei XH*i)

Electric field intensity of the reflected wave is given by
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E,=(pEye"?)a, (8.95)
Where p is known as reflection coefficient.

Magnetic field intensity of the reflected wave is given by

o em
H, = (_ﬁ_f e ) a, (8.96)

Average power density of the reflected wave is given by
1 — N
S, = > Real (E, X H*,)

There are two waves having the same frequency in medium no 1, the incident wave
and the reflected wave. Obviously the interference of these waves will take place,
hence the total intensity in medium no 1 will be equal to the phasor sum of the
incident and reflected wave.

Total electric field intensity in medium 1 is given by

Ei= (Eje Mz 4pE eh?)a, (8.97)

Total magnetic field intensity in medium 1 is given by

_

T‘il = Hi + Hr
— E, E, .
H, = (A— e"?—p— e7’12> a, (8.98)
N N

Medium No 2:
Electric field intensity of the transmitted wave is given by

E, = (tE,e7%) a, (8.99)
Where 7 is known as transmission coefficient.

Magnetic field intensity of the transmitted wave is given by
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- TE, _%,
H, = (ﬁ— e 727 ) a, (8.100)

Average power density of the transmitted wave is given by

1 _ .
S, = EReal(Ez X H*;)

We apply the boundary condition, which states that whenever a wave travels from one
medium to another medium, its tangential component does not change however its

normal component changes. As El and EZ are entirely tangential to the interface,
therefore

(Elz Ez) at z=0
1+p=r1 (8.101)
Similarly ﬁl and ﬁz are entirely tangential to the interface as well, therefore
ﬁ1 = ﬁz

(ﬁlzﬁz) at z=0

! L _ (8.102)

Putting the value of 7, we obtain

1 1 N 1

M P 1 12 P N2
The reflection coefficient is given by

Mz =
== - 8.103
P N2+ ( )

The transmission coefficient is given by
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A

_ 21),
Az + 71

T (8.104)

8-13 Lossless Dielectric-Perfect Conductor Interface

Consider the interface between a lossless dielectric medium and a perfect conductor
that is located at z = 0 as shown in Figure 8-8. The permeability, permittivity, phase
constant and intrinsic impedance of medium no 1 are represented by pg, &, 51 and 14
respectively, while the permeability, permittivity, propagation constant and intrinsic
impedance of medium no 2 are represented by u,, &, ¥,and 1}, respectively. The
incident wave travels in medium 1 along z — axis towards the interface. At the
interface, the amplitude of the incident wave is reflected back and no energy is
transmitted to the second medium.

Medium 1 Medium 2
g, 24, }91 and My Hyr €2, 'F: and 'ﬁ‘:

-3

E Incident wave E Transmitted wave
: i : )
5 5,

» Z - axis
E (Normal)
-
S, .._/'
Reflected wave l /
77 interface
s atz=10
Figure 8-8: Reflection of the wave
Let us consider the waves in medium no 1.
Medium No 1:
Electric field intensity of the incident wave is given by
E;=(EyeP7)a, (8.105)
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Magnetic field intensity of the incident wave is given by

—_ E i
H, = (n—0 eIh17) a, (8.106)

Average power density of the incident wave is given by
S; = % Real (E; x H*;)
Electric field intensity of the reflected wave is given by
E, = (pE,e/f17) a, (8.107)
Where p is known as reflection coefficient.

Magnetic field intensity of the reflected wave is given by

o
H, = (—n—: e/s:1?) a, (8.108)

Average power density of the reflected wave is given by
1 — .
S, = 5 Real (E, X H*,.)

There are two waves having the same frequency in medium no 1, the incident wave
and the reflected wave. Obviously the interference of these waves will take place,
hence the total intensity in medium no 1 will be equal to the phasor sum of the
incident and reflected wave.

Total electric field intensity in medium 1 is given by
E = E +E,
E,= (Eye /P17 4 pEyelfiz)a, (8.109)
Total magnetic field intensity in medium 1 is given by

—_

H1: ﬁl-l_ ﬁr
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— E . Ey .
H1 = (_0 e—1/31Z -p -0 e]ﬁ1 Z) ay (8110)
M M

Medium No 2:
Electric field intensity of the transmitted wave is given by

E, = (tE e ™7%) a, (8.111)
Where 7 is known as transmission coefficient.

Magnetic field intensity of the transmitted wave is given by

= TE, _
H, = (ﬁ—z‘) e27) a, (8.112)

Average power density of the transmitted wave is given by

1 . N
Szz EReal(Ez X H*Z)

We apply the boundary condition, which states that whenever a wave travels from one
medium to another medium, its tangential component does not change however its

normal component changes. As El and Ez are entirely tangential to the interface,
therefore

E,=E,
(Elz Ez) at z=0
1+p=1
Similarly ﬁl and ﬁz are entirely tangential to the interface as well, therefore

_

(ﬁlzﬁz) at z=0

226



L _Z (8.113)
m P m fl2 .
Putting the value of 7, we obtain
1 1 N 1
m P m 7 P M2
The reflection coefficient is given by
fla =M
= — 8.114
P M2+ 1M1 ( )
The transmission coefficient is given by
24
=2 (8.115)
M2 + 11
As impedance of the perfect conductor is zero therefore p = —1 and t = 0, which

means that total energy of the incident wave will be reflected back and no energy will
be transmitted to the second medium.
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