

University of Engineering and Technology, Peshawar

Faculty of Mechanical, Chemical, and Industrial Engineering

Department of Mechanical Engineering

COURSE OUTLINE DOCUMENT

1. Course and Instructor	
Course Title	Mechanics of Materials – I
Course Code	ME – 113
Theory / Laboratory	Theory
Semester	2
Class Room	ME – 123 / Google Classroom
Pre-requisite (if any)	Engineering Statics
Pre-requisite for	 Mechanics of Materials_II, Semester 3
	 Design of Machine Elements - I, Semester 4
	 Design of Machine Elements _ II, Semester 5
Credit Hours	3
Contact Hours	3
Compulsory/Elective	Compulsory
Instructor 's Name	Prof. Dr. Hamid Ullah
Instructor's Email	hamidullah@uetpeshawar.edu.pk
Teaching Assistant (if any)	Engr. Hamid Masood
Teaching Assistant's Email	hamidmasood@uetpeshawar.edu.pk

2. Aim of Course

Aim of the course is to provide the students of Mechanical Engineering (and Civil Engineering) with the foundation and perquisite knowledge of analyzing and designing load bearing structures (or machine elements). Both the analysis and design of a given structure (or machine element) involve the determination of stresses and strains induced in a structure (or machine element) subjected to known loads. Stress and strain are important concepts in the course on Mechanics of Materials. They permit the mechanical behavior of load-bearing structures (or machine elements) and determine its suitability for a given application.

3. Summary of Contents

- Axial loading ≻
- Stresses and Strains: Tensile, Compressive and Shear \geq
- > Hooke's law and Stress-strain relationship, Material's Properties, Elastic Constants, and their Relationships

1

- Thermal Stresses \geq
- Pure Bending of Beams, Moment of Inertia \geq
- Residual Stresses and Shear Stresses in Beams \triangleright
- Shearing Force and Bending Moment \triangleright
- \triangleright Torsion of Circular Bars
- Thin Walled Pressure Vessels \triangleright
- Analysis of Statically Indeterminate Problems

4. Course Learning Outcomes (CLOs)

CLO1	Understand the basics of mechanics of materials and their mechanical properties
CLO2	Calculate the stresses and strains in mechanical structures
CLO3	Solve problems related to bending and torsion and in mechanical structures

5. Program Learning Outcomes (PLOs)

- PLO 1. Engineering Knowledge
- PLO 2. Problem Analysis
- PLO 3. Design/Development of Solutions
- PLO 4. Investigation
- PLO 5. Modern Tool Usage
- PLO 6. The Engineer and Society
- PLO 7. Environment and Sustainability
- PLO 8. Ethics
- PLO 9. Individual and Teamwork
- PLO 10. Communication
- PLO 11. Project Management
- PLO 12. Lifelong Learning

6. Contribution to Programme Learning Outcomes

CLO Number	PLOs	Bloom's Taxonomy*
CLO1	1	C1
CLO2	2	C2
CLO3	2	C3

*For cognitive domain of Bloom's taxonomy, please refer to last page of the document.

7. Teaching and Learning Activities (TLAs)

CLO No.	TLAs	Functions	Hours/Week
1 - 3	Lecture	Present and convey critical information, history,	2
		background and theories of the course	
1 - 3	Tutorial**	Help students to practice / solve related problems,	1
		in groups, within the classroom	

**In Tutorial sessions, students are required to practice problems' solution of the relevant topic covered in the class.

8. Assessment Criteria

1.	Final Examination	60 %
2.	Mid-term Examination	20 %
3.	Sessional Marks (Assignments, Quizzes, Mini Project, etc.)	20 %

9. Re-registration / Improvement

A student receiving F (Fail) grade or W (Withdraw) grade in any course shall be required to re-register in that course. A student receiving less than or equal to C grade in a course may also re-register in that course, to improve his/her grade subject to a maximum of one chance within one year of the declaration of final semester result.

10.Attendance Requirement

Students are expected to attend at least 75 % of classes in order to be eligible to appear in the final examination.

11. Grading of Student's Achievement

Marks (%)	Grade	Grade Point
96-100	А	4.00
91-95	A-	3.67
86-90	B+	3.33

81-85	В	3.00
76-80	В -	2.67
71-75	C+	2.33
66-70	С	2.00
61-65	C-	1.67
56-60	D+	1.33
50-55	D	1.00
<50	F	0.00

12. Recommended Books

- 1. Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David F. Mazurek, *Mechanics of Materials*, 6th edition, ISBN: 978-0-07-338028-5, McGraw-Hill, 2012.
- 2. R.C. Hibbeler, *Mechanics of Materials*, 8th edition, ISBN: 978-0-13-602230-5, Prentice Hall, 2011.
- 3. M.G. James, *Mechanics of Materials*, 6th edition, Thomson, ISBN: 0-534-41793-0
- 4. P. P. Benham & R. J. Crawford, *Mechanics of Engineering Materials*, ISBN: 0582251648. Pearson; 2nd edition, 1996.
- F.L. Singer and A. Pytel, Strength of Materials, 4th edition.
- 6. W. Nash, Schaum's Outline of Strength of Materials, (Schaum's Outlines), 6th edition, ISBN: 9780071830805, McGraw-Hill Education, 2013.

13. Tentative Weekly Lecture Schedule

Week	Topics	Assignments/Quizzes
01	• Introduction to the Course, Aim and objectives	Mention here Assignments,
	Recommended books, Marks distribution, CLOs	Quizzes, etc. as per your
	and mapping with PLOs	plan
02	 Loading: Axial loading, Normal loading 	
	Stresses and Strains: Normal stress and Shear	
	stress	
	Normal stress: Tensile stress and Compressive	
	stress	
	Real-life Examples	
	Problems solution / Iutorial session	
03	Displacement, Deformation, and Strain	
	Strains: Normal strain and Snear strain	
	Real-life Examples	
	Problems solution / Tutorial session	
04	Stress-Strain Diagram	
	Properties of Material	
	Hook's law	
	Real-life Examples	
	Problems solution / Iutorial session	
05	Material's Constants and their relationship	
	Factor of safety	
	Problems solution / Iutorial session	
06	Statically Determinate and Indeterminate	
	Problems	
	Real-life Examples	
	Analysis of Statically Indeterminate Problems	
	Problems solution / Iutorial session	
07	Thermal Stresses, Strain, Elongation	
	Real-life Examples	
	Problems solution / lutorial session	<u> </u>
	Wish You Good Luck For Your Mid-term	Examination
08	 Pure bending of Beams 	

	Real-life Examples	
	Deformation in Pure Bending	
	Strain due to Pure Bending	
	Stress due to Pure Bending	
	Properties of Plane Areas	
	Problems solution / Tutorial session	
09	Bending of Beams (Contd.)	
	Shear Stresses in Beams	
	Shape Factor	
	Residual Stresses	
	Problems solution / Tutorial session	
10	 Types of Beams and Supports 	
	Real-life Examples	
	Relationships Between Loads, Shear-force and	
	Bending-moment	
	Shear Force and Bending Moment in Beams	
	Limitations of Flexure Formula	
11	Shear Force Diagram	
	Bending Moment Diagram	
	Elastic Curve	
	Problems solution / Tutorial session	
12	Torsion in Circular Shafts	
	Real-life Examples	
	Shaft Deformation	
	Shearing Strain in Shaft	
	Shearing Stress in Shaft	
13	Maximum Normal Stresses in Shaft	
	Torsional Failure Modes	
	Angle of Twist in Elastic Range	
	Power Transmission by Shaft	
14	Thin Walled Pressure Vessels	
	Real-life Examples	
	Assumptions in TWPV	
	Stresses in Cylindrical Vessel	
15	Stresses in Spherical Vessel	
	Limitations of I WPV	
	Problems solution / Tutorial session	
ł	Wish You Good Luck For Your Final Exa	amination

-

14. Cognitive Domain of Bloom's Taxonomy

Cognitive Domain

(thinking, knowledge)

5